

Unicode Issues in Microsoft Word 97 and

Word 2000

Page Page Page Page

1111

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

Copyright ©

2000

 Summer Institute

of Linguistics

Unicode Issues in Microsoft Word 97 and Word 2000

Peter G. Constable

,

SIL IPub/Non

-

Roman Script Initiative (NRSI)

Abstract

With the introduction of Unicode support in the Microsoft Office 97 applications, the

Word application

gained some interesting new capabilities. At the same time, some users

begun to encounter unexpected behaviour with their fonts and their data, such as text

displaying as boxes. This has been especially true for people using custom

-

built fonts

that use non

-

standard encodings. In this paper, we explore the Unicode

-

related

capability in Word, and look at several of the problems users may encounter. In

discussing these problems, we explain the causes, and suggest some fixes. We also

consider the direction in w

hich the software industry has been heading with regard to

Unicode and argue that users should adopt a Unicode strategy to avoid recurrences of

the kind of problems discussed here.

*

1.

Introduction

Over the past several years, Microsoft (

MS

) has gradually bee

n incorporating support for Unicode into their

software products. Beginning with Windows NT 3.1 and Windows 95, there has been at least some

measure of support for Unicode in these two lines of Windows operating systems. Building on this,

MS

began to add

support for Unicode to some of their office productivity applications beginning with the

release of Office 97. Similar capabilities began to be brought to some of the Macintosh versions of these

applications with the release of Office 98 for the Macintosh.

 With Office 2000, all of the core applications in

the Office suite had been revised to use the Unicode standard.

Word 97 and later

versions

store all text encoded in 16

-

bit Unicode. There are times when Word has to

translate 16

-

bit characters to and from

8

-

bit characters, however. This is needed in order to run on a

primarily 8

-

bit

-

character system (Windows 95/98/Me), and in order to provide backwards compatibility

with various 8

-

bit

-

character file formats, such as plain

-

text formats and the formats used b

y earlier

versions of Word.

MS

engineers had to forge a hybrid of 8

-

bit and 16

-

bit character support. The solutions

they adopted were designed primarily with the average business user in mind. For users working with

minority

-

language orthographies

using customized fonts and encodings, however, these solutions have

presented various challenges

—

for those working with

Roman

-

script

 orthographies

 as well as

non

-

Roman

.

*

This paper is a revised version of an earlier paper (Constable 1998) that focused on Word 97. The informat

ion has been

updated to include information related to Word 2000, and to reflect a better understanding of some of the issues. Some of

the issues that relate to Word 2000 have also been discussed in Constable (2000a).

Some of the facts discussed in this pa

per were first discovered by Bob Hallissy or Martin Hosken, and I gained much from

their insights. These paper also benefited from helpful comments by Bob Hallissy and Peter Martin. Any shortcomings

that remain are, of course, my own.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

2222

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

In this document, we discuss several Unicode

-

related areas of difficulty that users may face using Word 97

and later versions:

•

Text sometimes

 appears as boxes when the font is changed.

•

When a file is saved in Word 6.0/95 or other formats, text appears as question marks.

•

When text is formatted with certain fonts, lines wrap at any character rather than only at word

-

breaking characters.

•

With cert

ain custom fonts that had worked in Windows 95, some characters no longer worked after

upgrading to Windows 98.

•

Text is formatted with a certain font in Word 2000, but the text seems to be displayed with a different

font.

•

Word 2000 does not allow text to b

e formatted with certain fonts.

•

When a file is saved as text, certain characters are converted to sequences; for example, “

©

” is

converted to “(

c

)”.

•

Certain characters do not work with Word 2000 when Arabic or Hebrew support is enabled.

•

When running on Th

ai Windows 95/98, character code d211 does not work properly.

•

Since Word 97 and later are storing text encoded in Unicode, there may be times when a user would

like to know exactly what Unicode value is being stored, and the user may also like to be able t

o enter

particular Unicode values or to search for a Unicode value.

Some of these issues result from mixing custom encodings with software designed to use the Unicode

encoding standard. Other issues are known bugs. Also, some issues do not pertain specific

ally to Word but

relate to factors in Windows itself. All are issues that have been encountered in using Word 97 and Word

2000, however, and so are discussed together here.

In sections

6

–

14

, these i

ssues are discussed, each in a separate section. Beside describing the problems and

explaining why they occur, we also consider ways in which the problems may be dealt with, where

solutions to work around the problems exist.

Before discussing the first of

 these issues, we briefly present some technical background in sections

2

–

4

.

These sections give background information on character sets and codepages and on symbol versus non

-

symbol fonts, and als

o provides an overview of Unicode support in Word 97 and later versions.

For some of the issues discussed, we have written

VBA

 macros to provide fixes. These macros are available

in the file UnicodeWordMacros.dot

 which is available from the SIL Non

-

Roman S

cript Initiative

(

NRSI

; see the contact information in §

16

). For some of these issues, a different fix is available in the form

of a modified codepage 1252 file created by Martin Hosken, which may also be obtained from the

NRSI

.

Details regarding the installation and use of the Word template and the codepage file will be provided with

those files. Unfortunately, not all of the macros work in Word 98 for the Macintosh, and Martin’s Windows

codepage file just wouldn’t be at home i

n a Mac system folder.

After describing these various problems and the available fixes, we consider the current situation faced by

users, and how we might address such problems in the future.

Most of the comments regarding Word apply to Word 97 and later v

ersions. We will refer to these

collectively as just “Word”; where a comment applies only to a specific version, that version will be named

explicitly (e.g. “Word 2000”). Occasional reference will be made to Word 98 for the Macintosh. These

issues have not

 been researched as thoroughly in that version, however. No testing has been done with

Word 2001 for the Macintosh. References to “Word 10” or “Office 10” are referring to the next version for

the Windows platforms following Office 2000. (Office 10 was in

early beta as of the time of writing.)

Unico

Peter

G

2.

Character sets and codepages

Let’s begin with basics: Text data is always stored in a computer as a sequence of numbers where the

numbers are given a standard interpretation which determines what character each number

 represents.

For example,

ASCII

 is a universally

-

known encoding standard in which characters are stored as 7

-

bit

numbers and the number 66, for example, is interpreted to represent the character “B”, as illustrated in

F

igure

1

.

F

All t

valu

char

Whe

lang

to h

cert

In f

a

In

m

text

is no

spok

way

used

A co

and

for e

prin

text

stor

mig

F

S

H

S

H

H

tored ASCII data:

… 66 105 108 108 32 115 108 111 119 108 121 32 116 117 114 110 101 100 …

ow the data is interpreted:

… B i l l s l o w l y t u r n e d …
igure 1: Interpretation of encoded text

ext encoding works by these same principles; all that changes are the details of the syntax (e.g. 16-bit
es rather than 8-bit, or pairs of numbers rather than single numbers) and the semantics (what
acter is associated with a given number or combination of numbers).

n data is stored as 8-bit values, it is possible to distinguish 256 (28) different values. For many
uages, this is more than adequate to meet the orthographic needs of the language. This is not enough
andle all orthographies of every language, however. (It isn’t even adequate for the orthographies of
ain individual languages, such as Amharic or Chinese, let alone every orthography of every language.)
ct, 8-bits is enough to handle only the orthographies of a relatively small number of languages.

ost Microsoft software, from the time of the first version of DOS until recently, it has been assumed that
 data is usually stored as 8-bit data encoded using one of a certain set of 8-bit encoding standards. (This
t the case with Windows NT, however.) Since early in the history of DOS, MS had to support users who
e a wide variety of languages. In order to overcome the limitations of an 8-bit encoding, MS provided a

 in which the user could specify that a different encoding, and thus a different set of characters, be
. The mechanism they introduced was that of codepages.

depage provided a particular set of encoding definitions that would determine the encoding syntax
 semantics, and the system would provide mechanisms to switch between different codepages. In DOS,
xample, you could use the MODE command to control what codepage would be used by the display or
ter device (assuming the device was capable of supporting the codepage), and then every character of
 data would be interpreted by that device in terms of the selected codepage. Thus, a text character
ed as the number 119 might be interpreted as the character “w” when one codepage was selected, or it
ht be interpreted as the character “ל” if a different codepage was selected, as illustrated in Figure 2.
tored data:

… 66 105 108 108 32 115 108 111 119 108 121 32 116 117 114 110 101 100 …

ow the data is interpreted according to one codepage:

… B i l l s l o w l y t u r n e d …

ow the data might be interpreted according to another codepage:

 … ה ע ב ר ת ם א ח ל ש ח ן ח ח ד ץ …
de Issues in Microsoft Word 97 and Word 2000 Page Page Page Page 3333 of of of of 31313131
. Constable October 23, 2000 Rev: 3

igure 2: Data interpreted according to selected codepage

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

4444

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

Clearly, it would be essential to know what codepage should be used to correc

tly interpret a given text, but

that detail was left to be taken care of by the user or the application developer. The main point was that

codepages provided a mechanism by which the operating system could allow the user to work with a

greater variety of o

rthographies.

1

Word keeps track of the language and codepage associated with a run of text, and also the language and

codepage associated with whatever keyboard layout (or other input method) is currently active. Whenever

Word needs to have text converted

 from one encoding to another, it asks Windows to do this using the

appropriate codepage.

With the advent of Unicode support in Windows NT and partial Unicode support in Windows 95,

2

codepages took on an important, new characteristic: not only does a codep

age define a particular set of

characters, but it now also provides a mapping between the 8

-

bit character codes in that encoding and the

corresponding 16

-

bit Unicode values, as shown in

Figure

3

.

Figure

3

: Codepages then and now

The codepage provides mapping tables to go in either direction: from 8

-

bit to Unicode, or from Unicode to

8

-

bit. For example, as shown in

Figure

4

, codepage 1253 defines the interpretation

of the 8

-

bit number

0xC4 (d196) as

GREEK CAPITAL LETTER

 DELTA

 “∆

”. Codepage 1253 also provides the information that 0xC4

corresponds to the 16

-

bit number U+0394, which is the Unicode value that represents

GREEK CAPITAL

LETTER DELTA

. Likewise, if given the Unicode value U+0394, codepage 1253 can provide the translation

back to the 8

-

bit value, 0xC4.

3

1

In fact, Windows a

lso uses a second mechanism,

charset

, which is nearly identical to codepage. For the purposes of this

discussion, there is no important distinction between them. If you look at the contents of an

RTF

 file, however, you will

find that a charset is associate

d with each font rather than a codepage.

2

In fact, codepage 8

-

bit

-

to

-

Unicode mapping was introduced with Windows 3.1. Unicode information was only used

internally for displaying TrueType fonts. Applications did not have access to any Unicode information

until the

introduction of the Win32 and Win32s

API

s.

3

The mapping from Unicode to 8

-

bit isn’t just the reverse of the 8

-

bit to Unicode mapping. It will map as many Unicode

characters into the codepage as might make converted text legible. Thus, for examp

le, it might map U+0104, “Ą

”, to x41,

“A”, if the codepage doesn’t support U+0104.

Codepages as they were:

x20

SPACE

x21

EXCLAMATION MARK

x99

TRADE MARK SIGN

xE6

LATIN SMALL LIGATURE

 AE

xFF

Unicode

-

aware codepages:

x20

SPACE

Unicode

x21

EXCLAMATION MARK

U+0020

SPACE

U+0021

EXCLAMATION

MARK

x99

TRADE MARK SIGN

U+00E6

LATIN SMALL LIGATURE

 AE

xE6

LATIN SMALL LIGATURE

 AE

xFF

U+2122

TRADE MARK SIGN

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

5555

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

Figure

4

: 8

-

bit

-

to

-

Unicode and Unicode

-

to

-

8

-

bit mappings

If a different codepage were used, however, this information may not be available. For example, suppose

we asked Windows to translate the Un

icode value U+0394 using codepage 1252 (“US English”) . As shown

in

Figure

5

, the Unicode value U+0394 is not within the domain of codepage 1252 since

GREEK CAPITAL

LETTER DELTA

 is not part of the set of characters defined by that

 codepage. Since Windows can’t get an 8

-

bit

value from codepage 1252 that corresponds to U+0394, it will return an error value of 0x3F, “?”.

Figure

5

: Unicode

-

to

-

8

-

bit mapping for characters not in codepage

The function of codepag

es in translating between 8

-

bit values and Unicode values is important to

understand since they are regularly used within Windows for this purpose. In particular, they are

constantly used by Word for performing translations as it manages text data.

For fur

ther information on codepages and character sets in Windows, see Constable (2000c), Hosken

(1997) or Kano (1995). For further information on the basic issues of character encoding and the

representation or orthographic systems within computers, see Constab

le (2000b).

Codepage 1253

Unicode

x20

U+0000

xC4

GREEK CAPTIAL LETTER

 DELTA

U+039

4

GREEK CAPTIAL LETTER

 DELTA

xFF

Codepage 1252

Unicode

x20

U+0000

x3F

QUESTION MARK

U+00C4

LATIN CAPITAL LETTER

 A WITH DIERESIS

xC4

LATIN CAPITAL LETTER

 A WITH DIERESIS

?

U+0394

GREEK CAPTIAL LETTER

 DELTA

xF

F

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

6666

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

3.

Symbol fonts and non

-

symbol fonts

When a font contains glyphs for orthographic characters, it can be desirable for an application to have

some awareness of the properties of those characters so that it can provide better functionality. An examp

le

of such functionality is the ability of Word to cycle selected text between lower case, upper case and mixed

case by keying

SHIFT

-

F3

.

Providing such functionality for orthographic characters is feasible in principle if we assume that the

complete set o

f orthographic characters is limited and defined. In contrast, symbols and dingbats are an

open set since they potentially can include anything that can be represented graphically. There is no way to

list a comprehensive set of symbols in order to identify

 their properties. Moreover, even if such a listing

were possible, there would not likely be any interesting properties that would be useful for any processing

purposes.

As a result, fonts in Windows are flagged to indicate whether or not they contain only

 symbols.

4

 In

Windows, a font must be flagged as being symbol or non

-

symbol,

5

 and the way in which a font is flagged

will affect how software behaves when that font is used. For example, in Word, if the selected text is

formatted with a symbol font such as

 Wingdings, keying

SHIFT

-

F3

 to change case will have no effect. When a

symbol font is used, Word will make no assumptions whatsoever about properties of any characters

formatted with that font.

6

 For text that is formatted with a non

-

symbol font, however, W

ord will behave on

the basis of character

-

property information specified in the Unicode standard (or, in versions before

Word

97, provided by whatever codepage is in use).

When users create fonts to support minority

-

language orthographies, often the set of

 characters that are

required do not correspond to any existing codepage definition. If such a font is flagged as a non

-

symbol

font and is used in conjunction with a codepage that doesn’t match it, applications like Word may exhibit

undesirable behaviour.

For example, Word supports a “smart quotes” feature by which it automatically converts straight

quotation marks to left or right curly quotation marks as needed. Let’s suppose you were writing a

phonology paper in Word on US Windows and you had textual exa

mples in

IPA

.

 Suppose further that you

were using an

IPA

font that was flagged as being non

-

symbol, and that this font had some

IPA

symbol, e.g.

an over

-

striking dieresis, that was encoded using the 8

-

bit value 34 (0x22, which is the straight quotation

mar

k in codepage 1252). Then Word would convert the over

-

striking dieresis to whatever character was

encoded by the 8

-

bit value 148 (0x94, which is the right curly quotation mark in codepage 1252). The

reason for this is that Word would see that the font was

a non

-

symbol font and would request information

from codepage 1252 about the characters. Codepage 1252 can only assume that the character encoded by

the number 34 is the straight quotation mark, and Word would therefore automatically make the

conversion fr

om 34 to 148. Neither Word nor the codepage are aware or even care that the

IPA

 font has an

over

-

striking dieresis rather than a straight quotation mark. The only way for the user to avoid this change

from happening would be to turn off the smart quotes fe

ature, which may not be convenient.

To avoid such undesirable behaviour, fonts for minority

-

language orthographies or for

IPA

have often been

created as symbol fonts. This trick has worked in the past, but beginning with Word 97, this introduces

some new p

roblems, as will be described below.

To determine whether a font is flagged as a symbol font or not, you need a tool that can report internal

information regarding a font. A good example is the

Microsoft font properties extension

, which is available

as a f

ree download from

http://www.microsoft.com/typography/property/property.htm

.

4

Technically, the distinction is found in parameters within the cmap

 and name

 tables in the TrueType font. Fonts that

contain non

-

symbol characters are often referred to as “

UGL

” (Unicode glyph li

st) fonts.

5

Far East versions of Windows may permit other options.

6

This is slightly different from earlier versions of Word. Further details are provided below.

http://www.microsoft.com/typography/property/property.htm

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

7777

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

4.

Unicode support in Word

Beginning with Word 97, text is stored as 16

-

bit Unicode values. Unicode support

 in Word 2000 is very

similar to that in Word 97. There are some differences, though, mostly refinements in areas pertaining to

backwards compatibility with earlier versions of Word and with legacy 8

-

bit encoding standards. The most

important differences w

ith regard to Unicode support are described below.

7

That Word is storing text as 16

-

bit values can be illustrated by viewing a Word document using a hex

editor, as shown in

Figure

6

.

Figure

6

: Text in Wor

d 97 document stored in Unicode

Note that each character is two bytes long, e.g. “T” is stored as 0x54 0x00 (U+0054

—

the high order byte

follows the low order byte). Note also the five characters of Russian text (the 10 bytes that are selected):

U+0433 U+04

3A U+043B U+0434 U+0437. These are Unicode values, and the text would appear in Word

(using Times New Roman) as “гклдз

”.

When text is entered, Word converts 8

-

bit values to Unicode values according to whatever codepage is

active. (If you have the Windows m

ultilingual extensions installed, this can be changed by choosing a

different keyboard and language using the applet that appears in the tray of the taskbar.) This has

important consequences even if you are working with US English. For example, suppose you

 key

ALT

-

0151

to

get the em dash “

—

”. Now, you may be expecting that Word has stored that character using the number

151 since that is how you entered it, and you know that “the em dash is at position 151 in the font”.

8

7

The most significant development made in Word 2000 in relation to multilingual text sup

port is in the area of

globalization. Up to and including Office 97, Microsoft used to create different executables for various regions of the

world: one for Western European languages; one for Far Eastern languages, with support for double

-

byte encodings

and

input method editors; another for Arabic and Hebrew, with right

-

to

-

left support; and separate versions for Thai and for

Vietnamese. As of Office 2000, all of these groups of languages are supported in the same executable except for Thai and

Vietnamese

(the code for these was not ready in time; the goal of merging support for all of their markets in a single

version will be achieved with Office 10). The incorporation of Unicode support in Word 97 was the first step in

globalization that made the advances

 in Word 2000 possible.

8

This common perception is, in fact, not true. Windows TrueType fonts have always used Unicode values internally to

reference characters, not 8

-

bit character codes. Thus, the em dash is always at U+2014 in the font.

Basic Latin: U+0020

–

U+007F

Cyrillic: U+0400

–

U+04FF

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

8888

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

However, Word takes the number you e

ntered, 151, and asks Windows to translate that to a Unicode value

using the currently active codepage (1252, say). Windows returns the Unicode value for the em dash,

U+2014, and that is what Word stores.

We should point out some of the locations in Unicod

e of characters in codepage 1252, the default codepage

for a typical installation of US Windows. When using a non

-

symbol font and entering text encoded

according to codepage 1252, characters in the range 0x20

–

0x7E (d32

–

d126) and 0xA0

–

0xFF (d160

–

d255)

will

be converted to “equivalent” values in Unicode; e.g. 0x41 maps to U+0041, 0xD9 maps to U+00D9,

etc. For characters in the range 0x80

–

0x9F (d128

–

d159), however, this is not the case. Characters in the

range U+0080

–

U+009F are defined in Unicode as control ch

aracters, and the characters found in the

range 0x80

–

0x9F in codepage 1252 are found in various ranges of Unicode. For example, the em dash is

0x97 in codepage 1252, and U+2014 in Unicode (as described above); but 0x98 in codepage 1252, “˜”, is

U+ 02DC in

Unicode. Each of the characters of codepage 1252 in the range 0x80

–

0x9F are shown in

Table

1

 together with the corresponding Unicode value.

Character

code

Character

Unicode

value

Character

code

Character

Unicode

value

x80

 €

U+20

AC

x90

(reserved)

U+0090

x81

(reserved)

U+0081

x91

‘

U+2018

x82

‚

U+201A

x92

’

U+2019

x83

ƒ

U+0192

x93

“

U+201C

x84

„

U+201E

x94

”

U+201D

x85

…

U+2026

x95

•

U+2022

x86

†

U+2020

x96

–

U+2013

x87

‡

U+2021

x97

—

U+2014

x88

ˆ

U+02C6

x98

~

U+02

DC

x89

‰

U+2030

x99

™

U+2122

x8A

Š

U+0160

x9A

š

U+0161

X8B

‹

U+2039

X9B

›

U+203A

X8C

Œ

U+0152

X9C

œ

U+0153

X8D

(reserved)

U+008D

X9D

(reserved)

U+009D

X8E

 Ž

U+017D

X9E

 ž

U+017E

X8F

(reserved)

U+008F

X9F

Ÿ

U+0178

Table

1

: Codepage 1252 char

acters 0x80

–

0x9F and their Unicode equivalents

9

,

10

When a symbol font is selected, text that is entered is translated to Unicode by a different translation than

that provided by the current codepage. Since a symbol font could potentially contain any charac

ter or

graphic symbol, there is no way to know if the character being entered is defined in Unicode or not. As a

9

The charact

ers shown reflect the version of codepage 1252 found in Windows 98. Just prior to the release of Windows 98,

Microsoft has added three new characters to codepage 1252: the euro currency sign, “€

”, at 0x80 (U+20AC); latin capital

letter z with caron, “Ž

”, at 0x8E (U+017D); and latin small letter z with caron, “ž

”, at 0x9E (U+017E). Previously, the

code values 0x80, 0x8E and 0x9E were “reserved” in codepage 1252. The impact of this change on exist

ing fonts and data

is discussed briefly in §

9

. For further details, see Hallissy (1998).

10

Unicode characters in the range U+0080

–

U+009F are control codes and not printing characters. According to Kano

(1995), those character

 codes shown here as reserved map to U+FFFE. Our testing indicates, however, that they are, in

fact, mapped to their equivalents in the range U+0080

–

U+009F.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

9999

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

result, Word will translate the 8

-

bit value entered to a special range in Unicode known as the “Private Use

Area”. Specifically, Word will tran

slate the 8

-

bit value by adding 0xF000,

11

 as illustrated in

Figure

7

.

Figure

7

: Text formatted with symbol font in a Word 97 document

That characters formatted with a symbol font are being stored this way

can be illustrated by viewing a

Word document using a hex editor, as shown in

Figure

8

.

Figure

8

: Characters formatted with symbol font map to Unicode Private Use Area

11

What’s really happening here appears to be rather messier than this. We don’t know this for cert

ain, but it appears that

Word actually stores a symbol character as an 8

-

bit value and calculates a Unicode value to associate with that character

by adding xF000, but that Word doesn’t use that calculated Unicode value to display the character. (It would

use that

Unicode value for searches, however.) To display the character, it appears that Word passes the 8

-

bit value to the
TextOutA()

 Win32

API

, and that TextOutA()

 is finding the character in the font using the translation charcode –
0x20 + usFirstCharIndex

(usFirstCharIndex

 is found in the OS/2 table in the font). What this means is that

you could have a symbol font in which the characters are at (say) U+E020

–

U+E0FF. If you selected this font and typed

“A”, Word would store 0x41, it would display the cha

racter at U+E041 in the font, but Word would tell you that the

character is actually U+F061, and you would need to search for U+F061 to find it.

symbol character codes

Unicode

x20

SPACE

x21

(symbol char)

x22

(symbol char)

U+F020

(Private Use Area)

U+F021

(Private Use Area)

xFF

U+F022

(Private Use

 Area)

Symbol:

U+F020

–

U+F0FF

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

10101010

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

A similar translation occurs when ex

isting text that was entered with a non

-

symbol font selected is

reformatted using a symbol font. For example, suppose the character “a” is entered while the Times New

Roman font is selected. The 8

-

bit value for “a” in codepage 1252 is 0x61, and this gets t

ranslated to the

Unicode value U+0061. If that character is then selected and the font is changed to Wingdings, Word will

replace the value U+0061 with the value U+F061. Thus, any text that is formatted with a symbol font will

contain characters in the ran

ge U+F020

–

U+F0FF, regardless of how it was originally entered.

12

Word is able to save to or read from various file formats, including several that predate Word 97. Examples

include

MS

-

DOS

text, Word 2.x, Word 6/Word 95, and

RTF

.

13

 Since all of these file for

mats store text as 8

-

bit

values, Word must convert between 8

-

bit encodings and 16

-

bit Unicode whenever it reads from or saves to

one of these formats. These conversions are handled by the codepages installed in the system, and the

conversion may or may not

 succeed without loss of information. For example, if a Word document

contains a Chinese character, e.g. “脣

” (Unicode value U+8123), and the file is exported

as

MS

-

DOS

 text on

a non

-

Far East version of Windows, the Chinese character would be converted to a

 question mark “?” since

the relevant codepage (the “

OEM

” codepage for that system) does not include that character. The same will

be true in some situations if the file is exported as, say, a Word 2.x document. (This would not happen on a

non

-

Far East ver

sion of Windows if system files for Far East support are added later. This is explained

below.)

Word 2000 provides better support for exporting to 8

-

bit plain text files than does Word 97. In addition to

the “MS

-

DOS Text” and “Text Only” export options, W

ord 2000 offers an “Encoded Text” option that

presents a separate dialog to allow the user to select the encoding to be used for the exported file. Thus,

given the document described above containing Chinese characters, the user could specify that the plai

n

text file should be encoded using an encoding standard that supports Chinese, as illustrated in

Figure

9

.

Figure

9

: Word 2000’s “Encoded Text” file export option: user can select the encoding for the ex

ported text file

Of course, this assumes that there is a codepage that supports Chinese characters installed on the users

system, which is not always the case. (It is not the case by default on US Windows 95, for example.) Also,

only one codepage at a time

 can be used. Thus, if a file mixes characters that are not all supported by any

12

If the previously existing text were from a different codepage than 1252, for example if it were Cyrillic te

xt, Word will

convert back to an 8

-

bit value using the Cyrillic codepage before doing the translation into the range U+F020

–

U+F0FF.

Interestingly, if the existing text is not defined in any codepage, if it were Ethiopic or Yi, for example, then Word would

not change the character code. Thus, it is possible to have text that is formatted with a symbol font but that is not in the

range U+F020

–

U+F0FF.

13

The

RTF

 format was updated for Word 97.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

11111111

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

one codepage, then not all will survive the export process. This is illustrated in

Figure

9

, for example, by the

Arabic character shown in red in the

 preview window.

If this same document containing Chinese characters is exported to

RTF

 format, the

RTF

 file stores the

Unicode value

(albeit in the decimal representation of a signed

-

integer value),

and also Word’s translation

of that character back to 8

-

bit, “?” (on non

-

Far East systems without any codepage support for Chinese

characters).

Thus, the

RTF

 file stores U+8123 as “

\

u

-

32477

\

'3f”. The

RTF

 file also correctly maintains the

font information. As a result, when the

RTF

 file is opened again, the char

acter “脣

”

 will appear again as it

originally did.

Office 97 and Office 2000 include fonts and system files that provide some Far East support. These will

allow you to view documents with Chinese, Japanese or Korean text in Word. (Office 97 did not provide

any means to type in these scripts, though Office 2000 does). On a system that has these files installed, if a

file contains the Chinese character

U+8123, “脣

”, and

the file is exported to

Word 2.x, then when the Word

2.x document is opened, that Chinese ch

aracter will appear as “

Ã‹”.

Note that this is a two

-

byte sequence.

Word has used the Far East support files (specifically, the codepage files) to convert the Unicode value

U+8123 to the double

-

byte sequence that would be used on a Far East version of Wind

ows, 0xC3 0x8B.

14

Word is able to do this conversion when saving to Word 2.x format, but along the way it looses

information regarding the character set/codepage.

15

Word 97 and Word 2000 will behave differently when saving to Word 6.0/95 format. Word 97 give

s the

same behaviour when saving to Word 6.0/95 format as when saving to Word 2.x format: when you re

-

open

the document in Word 97 (or Word 2000), the Chinese character will have been converted to

“

Ã‹”. The

codepage information has been lost. In contrast,

Word 2000 manages to retain the codepage information

when saving to Word 6.0/95 format. Thus, when the file is re

-

opened, the Chinese character

U+8123, “脣

”

is retained.

If the same file were saved to

RTF

 format with the Far East support files installed, Word does the same

translation giving the double

-

byte sequence, 0

xC3 0x8B, and the

RTF

 file also stores the Unicode value.

Thus, the

RTF

 file stores “

\

uc2

\

u

-

32477

\

'c3

\

'8b”. When the file is saved to

MS

-

DOS

 text on a US version of

Windows, however, the character is converted to “?”, even with the Far East support files installed. This is

because the

MS

-

DOS

 text option uses the default “

OEM

” codepage for the s

ystem, which doesn’t include

Chinese characters on US Windows.

In theory, the general principle here for how Word behaves in saving to file formats for earlier versions of

Word that use 8

-

bit text is that, if there is a codepage available on the system fo

r the characters in the file,

then Word will convert the text using that codepage. There are ranges of Unicode for which no Windows

codepage has ever been defined, for instance Devanagari or Yi. In these cases the characters will always be

converted as “?”

 since there is no alternative. For characters in ranges that do have codepages, though, in

principle they should get converted using the appropriate codepage.

In practice, Word 2000 does a better job at this than Word 97, though there are still some situ

ations in

which Word 2000 may not get things completely right. For instance, I did a test in Word 2000 using some

Thai characters and saving to Word 6.0/95 format. I expected it to work, since Word 2000 did a good job

with other scripts, like Chinese and A

rabic, and because I know that the appropriate codepage for Thai is

installed on my system. It did not work, however: the Thai characters were converted to question marks.

(In fairness, it should be noted that the common version of Word 2000 was designed t

o support both

Arabic and Chinese, but not Thai. See note

7

.) There are also certain edge cases in which Word 2000 may

14

This is the mapping defined by codepage 936, which is used for S

implified Chinese.

15

Word 2.x was developed for Windows 3.x, which only allowed applications to work with a single codepage. Thus, Word

2.x had no reason to store this information.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

12121212

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

have character encoding or font problems in conversion to Word 6.0/95, but these are unlikely to affect

man

y users.

16

Word also supports import and export to Unicode text format. As with

MS

-

DOS

 format, all layout and

character formatting information is removed, but the Unicode character data is retained.

Figure

10

 shows

the contents of

a Unicode text file that was created by exporting a Word document as Unicode text. The

Word document contained English and Russian text, and text formatted with a symbol font.

Figure

10

: Word 97 document exported to Unicode text

N

ote that the first two bytes of the file were not in the original text. This Unicode character is the

BYTE

ORDER MARK

, U+FEFF, which indicates the byte order of the data (i.e. whether the high

-

order byte

precedes or follows the low

-

order byte) and should b

e the first character of any Unicode text file.

17

 In the

case of this file, the high order byte follows the low order byte.

For more information on Unicode support in Word 97 and on exporting text from Word 97, see

Constable

(1997).

Having given some techn

ical background as well as an overview of Unicode support in Word, we can now

move on to look at some specific issues that arise in Word as a result of Unicode support.

5.

Viewing stored Unicode values, entering specific Unicode values

and searching for Unic

ode values

We will address these issues first since some of them are useful for the sections that follow.

Suppose you’d like to find out what Unicode value Word is actually storing for a given character. How

would you do it? Word 97 doesn’t provide any way

 to do this. Word 2000 does provide a way, though: if

you select a character or a run of text and then open the Insert/Symbol dialog box, you will see the Unicode

value of the first character in the selection reported on the status bar, as shown in

Figure

11

.

16

For example, I found that if a Word 2000 file contains a Chinese charac

ter next to an Arabic character, and the file is saved

to Word 6.0/95 format, something will get lost. So, for instance, in one test the string “脣ج

” came back as “

ãúج

”, with the

codepage and font family for the Chinese character having been lost. In another test, the same string came back as “

ãú

Ì”,

with codepage and font family information for

both

 characters having been lost.

17

This is true for f

iles that use the UTF

-

16 encoding form, and in situations where the byte order is not determined by some

external protocol. The byte order mark is not required in situations in which a particular byte order is required by a

higher protocol, or if the UTF

-

8

 encoding form is used.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

13131313

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

Figure

11

: Word 2000 Insert/Symbol dialog: Unicode value of selected character shown in status bar

18

This works, but is limited to only one character at a time. That is not very convenient if you would

 like to

know the Unicode values for a string of characters.

The UnicodeWordMacros.dot

 template (version 1.3) provides a macro that fills this gap. The
ShowUnicode

 macro presents a message box showing the Unicode values in hex of the first 16 characters

o

f the currently selected text. If no text is selected, it shows the Unicode values of the 16 characters before

the insertion point, and the 16 characters that follow the insertion point. To use it, all you have to do is

select some text (if you want) and r

un the macro. For example, if you selected the following line:

Ab

—

é Ωд脣א

and ran ShowUnicode

, you would see the results shown in

 Figure

12

:

 Figure

12

: ShowUnicode

 results

Note that the two Wingdings are in the range U+F020

–

U+F0FF, and that the Hebrew, Greek, Russian a

nd

Chinese characters are from different areas of Unicode.

Now you know how to find out the Unicode value of a character. What if you want to insert a specific

Unicode character into your document? If you have a non

-

symbol font selected that supports sever

al

18

In

Figure

11

, the reason that the Insert/Symbol dialog shows only “

•

” for each character is that it is displaying a block of

characters from the Chinese range using the “(normal text)” font setting, which is the default font for the paragraph. In

this case, the default font does not contain glyphs for any Chinese characte

rs, and so is displaying the dot as a default

glyph. This particular font is a Postscript font; most TrueType fonts would have shown a box.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

14141414

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

codepages, the Insert/Symbol dialog will provide a way to access characters in that font from each of those

codepages.

Figure

13

 shows what the dialog looks like when Times New Roman is selected.

Figure

13

: Inserting Unicode characters using Insert/Symbol dialog

Note that the Times

 New Roman font that comes with Window 95 contains a lot more than just Roman

characters (though not all versions contain Hebrew and Arabic characters).

This method may not al

ways work, however. If you have a font that supports a codepage which is not

installed in your system, or if the font has characters defined in ranges of Unicode for which there is no

standard codepage defined, then Word’s Insert/Symbol dialog will not all

ow you to access those characters.

To make up for this, we have provided the EnterUnicodeCharacters

 macro in
UnicodeWordMacros.dot

. This macro presents a dialog box with a textbox control in which you can

specify a Unicode value in hexadecimal, as shown in

 Figure

14

:

 Figure

14

: EnterUnicodeCharacters

 macro dialog

To use the macro, simply run it. Only hexadecimal characters can be entered in the textbox, but

UP

 and

DOWN ARROW

keys and

PAGE UP

 and

PAGE DOW

N

 keys can be used to increment and decrement the value.

UP

and

DOWN ARROW

 keys change the value in increments of 0x0001. If you hold down the

SHIFT

 key, then

UP

and

DOWN ARROW

 keys change the value in increments of 0x0010. The

PAGE UP

 and

PAGE DOWN

 keys c

hange

the value in increments of 0x0100, but if you hold down the

SHIFT

 key then they change the value in

increments of 0x1000.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

15151515

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

Once the Unicode value has been specified, press

ENTER

 or click the Insert button to insert the character

into the text. When yo

u are finished inserting characters, press

ESC

 or click the Cancel/Close button to close

the dialog.

19

,

20

The EnterUnicodeCharacters

 macro provides a convenient way to enter a limited number of

characters. What if a user wants to be able to type larger amou

nts of text that is in a range of Unicode for

which no keyboard handling facility is available on their system? Fortunately, an increasing number of

keyboards for various languages are being shipped from

MS

 with products like Office and Internet

Explorer,

and these will work with recent versions of Office. Third

-

party products that makes it easy to

define keyboards and which can generate Unicode

-

encoded text are starting to become available; for

example, version 5 of the Tavultesoft Keyboard Manager (“Keyma

n”) is expected soon, and it will provide

support for Unicode. Most applications that support Unicode are limited when running on Windows 95,

98 or Me, however, to allowing keyboard input only for characters that are defined in some Windows

codepage. What

can a user do when no tools are available for entering text using the particular character

ranges that they need?

For example, there is an existing allocation in Unicode for Ethiopic, but to date

MS

 has not provided any

way to type Ethiopic

-

script text in

any version of Windows. Or, you may be working with a script that is

not yet defined in Unicode and have created a Private Use Area encoding for that script, but

MS

 does not

provide way to enter text in the Private Use Area (other than what we have describ

ed is happening with text

formatted with a symbol font). For certain situations, there may be a real need to have some way of

entering Unicode text when no such keyboarding facility is available.

While we don’t have a working solution to meet any such need

, we do provide a macro that illustrates how

temporary solutions to such needs might be met. The EnterPUAText

 macro is provided in
UnicodeWordMacros.dot

 to illustrate how Visual Basic for Applications (

VBA

)

 might be used to

implement an input method so tha

t a user can key data in ranges of Unicode for which no existing input

method is available. It presents a dialog box in which the user can type text; on closing, that text is inserted

into the document.

For this illustration, we created a non

-

symbol font c

alled “Latin1+E9xx SILDoulos” which contains the

characters of codepage 1252 in their standard Unicode positions, and it also contains characters in the

Unicode Private Use Area, specifically in the range U+E900

–

U+E9FF. The glyph for each character in that

range is the Unicode value of that character. (E.g. the glyph for character U+E92B appears as “

”.) Thus,

you will see exactly what Private Use Area values are being entered.

To use the macro, you must first have the Latin1+E9xx SILDoulos font installed o

n your system. (It may be

necessary to install the font before Word is loaded for it to work properly.) When you are ready to run the

macro, position the insertion point in a document at a place where you won’t mind having meaningless

text added. Then run

the macro. When the dialog appears, just begin typing. The text you enter will be

displayed in the Latin1+E9xx SILDoulos font. At this point, the dialog will appear something like the

screen shot in

 Figure

15

:

19

Version 1.3 of this macro package has been made available in two variants specific to Word 97/98 and to Word 2000

 and

later. In the Word 2000 variant, the macro dialog is a modal dialog, so you can move the insertion point to a new location

in your document while keeping the dialog open. This capability was not possible in Word 97 and Word 98.

20

Once it becomes avai

lable, Office 10 will provide a means to enter any Unicode character by typing the Unicode value in

hex and then pressing Alt

-

x. This is described in relation to searching in Word 10 below.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

16161616

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

 Figure

15

: EnterPUAText

 macro dialog

After you have typed as much text as you want, press

ENTER

 or click the Enter button, and the text you

typed will be inserted into your document and formatted with the Latin1+E9xx SILDoulos font.

21

This input met

hod is extremely crude and simple. The dialog permits only the most minimal of editing

capabilities: typing and backspacing. Rather more sophistication would be very desirable for a working

implementation. Also, the keyboard layout will appear to be random

. (The macro was adapted from

something that was being done for another project without any attempt to make the keyboard layout more

meaningful for this context.) If you look in the

VBA

 code for the dialog form, you will see that the keyboard

can be reconf

igured very easily.

Feel free to experiment with this macro

—

that’s why it was made available.

Moving on, we now look at how you go about searching for a particular Unicode character in your

document, or how to specify a particular Unicode character to be

replacement text. In Word’s Find and

Replace dialog, you can specify a particular Unicode character as the “Find what” or “Replace with” text by

entering

^u

NNNNN

where

NNNNN

 is the Unicode value in

decimal

 representation. So, if you wanted to search for th

e character

U+043C, you would calculate the decimal equivalent of 0x043C, which is 1084, and you would enter

“^u1084” as the search string.

Word 2000 has another interesting way to specify arbitrary Unicode characters for searching or replacing.

Try this:

open the Find and Replace dialog box. In the “Find what” text box, enter the hex digits “5d0”,

which is the Unicode value for the Hebrew letter aleph. Now, press

A

LT

-

X

. You should see the hex digits

that you entered disappear and be replaced by the corresp

onding Unicode character, aleph.

The “Find what” and “Replace with” text boxes in the Find and Replace dialog boxes are implemented

using a control (a programmer’s user

-

interface building block) known as the RichEdit control. This control

is also used for

text boxes in other Office dialogs, such as the “File name” control in the File/Open dialog.

The version of the RichEdit control that ships with Office 2000 has the interesting feature just described:

you can enter the hex digits for any Unicode value and

then press

A

LT

-

X

, and it will replace the hex digits

with the corresponding Unicode character.

If you have Word 97 and not Word 2000, however, you are limited to using a decimal representation, as

described above.

22

 If you only need to search for a single

character and don’t need to replace, and you don’t

21

In the Word 2000 variant of Version 1.3 of this macro package t

he dialog for this macro is a modal dialog. This means that

you can move the insertion point in the document to a new location while keeping the dialog open. Also, when you click

the

ENTER

 button, the dialog remains open. In the variant for Word 97, this w

ill close the dialog.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

17171717

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

need to specify any search options, then you may find it easier to use the FindUnicodeChar

 macro

provided in UnicodeWordMacros.dot

. The main advantage of this macro is that it allows you to

specify the cha

racter in hexadecimal rather than decimal, as is required by Word’s Find and Replace

dialog.

To use the macro, simply run it and specify the character to search for in hexadecimal. The controls on the

dialog work exactly as those in the EnterUnicodeCharacters

 dialog described above.

We have looked at background issues on matters such as codepages, discovered how Word is making use

of Unicode for encoding text, and explored some of the ways that we can work with Unicode characters in

Word. It is now time to

turn our attention to some of the problem areas mentioned at the outset.

6.

Problem: Text appears as boxes

Many people have encountered the problem of having text appearing as boxes. The symptom of this

problem is that text is displayed as a series of boxes r

ather than using the glyphs you expected from the

font you selected.

23

,

24

As an example of how it can arise, consider a linguistics student writing a paper. In the paper, she is using

Times New Roman (a non

-

symbol font) for body text, and the SILDoulos IPA9

3 font (a symbol font) for

IPA

 characters. The latter font has all of the lower case English Roman characters in their usual

ASCII

positions, so after typing an

IPA

 transcription, she continues typing prose text forgetting to first change the

font back to

the body text font. Once she types an upper case letter, however, she remembers that she needs

to change the font to the body text font, and she tries to change the font for the prose text she has just

typed. Instead of Roman characters, however, she gets

boxes.

In earlier versions of Word, it was possible to change the font used for a run of text between symbol and

non

-

symbol fonts without loss of information. In Word 97 and later, this is not always possible, and under

certain conditions, changing the fon

t selected from a symbol font to a non

-

symbol font may result in boxes

appearing rather than the characters you expected.

The reason such font changes worked without any problems in earlier versions of Word was that Word

didn’t change the stored text data

when a font change was made. If a character 0x54 was formatted with

Times New Roman (a non

-

symbol or “

UGL

” font

)

 and the font was changed to SILDoulos IPA93 (symbol),

the stored 8

-

bit character value remained 0x54. If the font was changed again to Arial (

U

GL

), the character

again remained 0x54, as illustrated in

Figure

16

.

22

The mechanism described for Word 2000 will also work with Word 97 if you happen to have the appropriate version of

the RichEdit control installed on your system. It might have been installed with another

MS

 application, for instanc

e. To

find out if you have the necessary version of RichEdit, just try out this trick. If the right version of RichEdit is installed on

your system, it will simply work.

23

Certain fonts may display a different shape than a box. For example, many Postscrip

t fonts display a middle dot: “•”

24

There is another potential cause of unexpected boxes being displayed than what is discussed here. That situation applies

to those using Windows 98 or who have the Windows 95 euro patch installed. This is discussed in §

9

.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

18181818

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

Figure

16

: Font changes never affected data prior to Word 97

As of Word 97, all this has changed. Recall that when a character is enter

ed, a translation takes place from

8

-

bit to Unicode, and Word stores the Unicode values. If a non

-

symbol font is in use at the time, the

translation is determined by a codepage. If a symbol font is in use, however, a different translation process

is used,

and the resulting Unicode values are always in the range U+F020

–

U+F0FF. Recall also that similar

translations also occur whenever a font change is made from a non

-

symbol font to a symbol font.

You can experiment with the ShowUnicode

 macro to see for yours

elf that characters formatted with a

symbol font are always encoded in the range U+F020

–

U+F0FF.

25

Once Word 97 is at the point where it has a character

formatted with a symbol font

with a

value in the

range U+F020

–

U+F0FF

, then if the font for

 the character is changed to a non

-

symbol font and Word

doesn’t have any prior information about the character set for that character, it won’t have any way to

know what character to really associate with that character value

.

Therefore

it won’t know if it

 is in any

codepage supported by the non

-

symbol font, and therefore Word won’t know what codepage to base the

translation of the character value on. After the character is formatted with the non

-

symbol font, Word

continues to display a character value in t

he range U+F020

–

U+F0FF. Again, you can experiment with
ShowUnicode

 to verify this. Since most non

-

symbol fonts don’t have any characters defined in this

range, a box appears instead.

Let’s consider an example: In Word 97, suppose you have the SILDoulos

IPA

93 font (symbol) selected and

you press the “T” key. Word gets the 8

-

bit code 0x54 and translates this to U+F054. Next you select that

character and change the font to Times New Roman (

UGL

)

. As illustrated in

Figure

17

, Word will

continue

to display the character at U+F054, but no such character exists in Times New Roman, and so you get a

box.

25

That is, Word makes it appear this way. Cf. note

11

 for technical details.

6

x54

Formatted with

symbol font

T

Font changed to

UGL

-

encoded

font: still x54

Character codes in a Word 6.0 document:

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

19191919

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

Figure

17

: Fonts changes can result in boxes being displayed in Word 97

Now let’s alter that example a little: Sup

pose you began with Arial and you press the “T” key. Assuming

that codepage 1252 is active, Word will translate the 8

-

bit value 0x54 to U+0054. Now you change the font

for that character to Wingdings, and Word translates the character to U+F054. At this po

int, as long as you

have not saved the file since you made the change to Wingdings, Word remembers that the character was

originally in the US English character set, and if you change the font back to a non

-

symbol font that

supports codepage 1252, such as

Times New Roman, the character will be translated back to U+0054. If,

however, the font has been changed to Wingdings and you

save

 the file, at the point the file is saved, Word

forgets the earlier character set information. Now if you try to change the fo

nt from Wingdings to Times

New Roman, Word will not know how to translate from U+F054, it will continue to display that value, and

you will see a box rather than “T”.

Word 2000 has addressed this problem to some extent. It only occurs if a file containing

text that is

formatted with a symbol font is saved and closed, later reopened, and the font for that text is then changed

to a UGL font. In other words, it is doing a better job at remembering the history of character formatted

with a symbol font for as lo

ng as the file is kept open, so as to reduce the likelihood of encountering this

problem. The problem can still occur, however, in the situation just described.

In September, 1997,

MS

 provided an article in their Knowledge Base (Microsoft 1997) providing a

 fix to this

problem in the form of a

VBA

 macro. This macro has some unfortunate weaknesses, most notably that it

would alter any characters in the range U+8000

–

U+FFFF, which could affect characters in scripts such as

Chinese or Korean, as well as symbo

ls. I have written an improved macro to replace it called
ConvertSymbolToWestern

, which is available in the UnicodeWordMacros.dot

 template file.

To use the macro, simply select some text that is formatted with a non

-

symbol font and which is displaying

as b

oxes, and run the macro.

This macro will only operate on characters in the range U+F020

–

U+F0FF. Characters will be displayed

with boxes whenever they are formatted with a font that does not provide glyphs for those particular

characters. For example, T

imes New Roman does not cover the Devanagari range of Unicode. If a text

contains the character U+0915,

DEVANAGARI LETTER KA

, and that character is formatted using Times New

Roman, a box will appear: “�

”. The ConvertSymbolToWestern

 macro does not attempt t

o fix that

problem. The only solution is to find a font that covers the Devanagari range of Unicode.

26

26

In future versions of Word or when using future versions of Windows, you may find that Word and/or Windows will

au

tomatically substitute a font that covers the Devanagari range. Word already does this for certain ranges of Unicode, as

explained in §

0

.

6

Formatted with

symbol font: x53

converted to

U+F053.

�

Font changed to

UGL

-

encoded

font: codepage

doesn’t give

mapping

from

U+F053, font

doesn’t contain

glyph for

U+F053.

Character codes in a Word 97 document:

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

20202020

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

The macro assumes that the desired codepage of the text is codepage 1252. Basically, all it does is to take

the Unicode value of characters in the range U

+F020

–

U+F0FF and subtract 0xF000. If you started with

text in a different range of Unicode other than that which corresponds to codepage 1252, however, for

example Cyrillic, and that text was formatted with a symbol font, and then later the font was change

d back

to a non

-

symbol font which caused boxes to appear, running this macro will return Roman characters,

not

the original Cyrillic text.

There is another solution available to this problem: It involves saving the document to Word 2.x, Word

6.0/95, or tex

t file formats, as described in the following section. Details are left to be discussed in that

section.

7.

Problem: Text appears as question marks when file is saved to Word 6.0/95 or other

formats

This is another common problem many users encountered after

the introduction of Word 97. Typically, it

will happen in situations when people work with multiple versions of Word or interact with others using

older versions of Word. It can also be a problem for people who like to use Word to create is plain text file

s

(files that have only text and no formatting) because Word allows them to specify a font for displaying text

and because it is a full

-

featured text editor.

Here’s a typical scenario: Someone begins preparing a phonology exam for the course they are teac

hing

using Word 97, and the document contains

IPA

characters formatted using the SILDoulos IPA 93 font (a

symbol font). They want to work on the document at home using Word 6, so they save the document in

Word 6.0/95 format. When they get home and open the

 document, all of the

IPA

characters appear as

glottal stops.

Here’s another scenario: Someone is working on minority

-

language text that will be used for

CARLA

processing, and they are using Word 97 to edit the text so they can see it displayed using their

SILManuscriptBantu1 font, a symbol font which has several non

-

standard, extended

-

Roman characters.

After editing their text, they save their file using the Text Only file format option. When they later look at

the file, they discover, to their dismay, tha

t the entire text has been converted to a string of question marks.

These scenarios all involve the use of symbol

-

encoded fonts. This problem did not occur on earlier

versions of Word because, in those versions, Word only ever stored characters as 8

-

bit va

lues, so it never

had the need to do any translation from Unicode to 8

-

bit (see

Figure

18

). When exporting to a text file, all

that was necessary was to strip away the layout and character formatting information, leaving only the

original codepoint values.

27

27

There are two important situations in which character information would be lost. One would

 be in the case of mixing text

formatted using custom fonts with non

-

standard character sets together with text formatted using standard fonts. The

other be in the case of mixing text formatted with two or more custom fonts that involve different character

 sets. In these

situations, removing information about the font also removed information about character distinctions. In those

situations, though, users had no expectation of all the character distinctions being retained in plain text. What is

important i

n this discussion is that, in these earlier versions of Word, the

codepoints

did not change.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

21212121

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

Figure

18

: No character translation on export to text prior to Word 97

The reason this happens in Word 97 and later is that, whenever Word exports to an 8

-

bit text file or to a file

format for an earlie

r version of Word, it is forced to translate every character from Unicode to an 8

-

bit

value. Since the text was entered using a symbol font, it is stored by Word as Unicode characters in the

range U+F020

–

U+F0FF. As mentioned above, when characters are form

atted with a symbol font, and

hence are in this range, Word has no way of knowing what codepage to associate with those characters.

Nevertheless, when exporting to a text file, Word must make some decision about what codepage to use for

the translation. Fo

r lack of any better alternative, Word simply uses the default system codepage, 1252 on a

typical installation of US Windows.

Even though Word will make the translation using a system codepage, no Windows codepage supports

characters in the range U+F020

–

U

+F0FF in the domain of its Unicode

-

to

-

8

-

bit mapping table. As a result,

for each character in that Unicode range it simply returns a default error value of 0x3F, “?”. (See

Figure

19

.)

Thus, the user’s text gets converted to a sequ

ence of question marks.

Figure

19

: Export to text on Word 97: symbol characters converted to “?”

The only solution to this problem that we have available at this time requires that the system codepage for

your installation of Wind

ows is 1252 and that you have Martin Hosken’s modified codepage 1252 installed,

and it assumes that the desired codepage of the text is 1252. (Note: this solution can also be applied to the

problem described in the previous section, that of text appearing

as boxes, since that issue also involves the

need to convert from the range U+F020

–

U+F0FF down to 0x20

–

0xFF.)

…

…

x4E

…N

…

x4E

Word 6.0 document

Plain text file

export

export

…

…

Word 97 document

Symbol font: x4E

converted to

U+F04E

…?

…

Plain text file

Export to text:

codepage

doesn’t give

mapping

from

U+F04E, error

value x3F

returned

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

22222222

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

To implement this solution, all that is needed is to install Martin’s modified codepage 1252, and then to go

back into Word and export your data t

o a text file again. With the modified codepage installed, it will all

come out as Roman characters in the range 0x20

–

0xFF.

The reason this works is that Martin’s modified codepage 1252 provides a mapping from U+F020

–

U+F0FF down to 0x20

–

0xFF. Thus, when Wo

rd attempts to use codepage 1252 to do the translation, the

codepage is able to return 8

-

bit character values rather than the default error value, and so the text gets

translated to Roman characters.

It should be noted that this solution to work around the

 problem requires some strong caveats. Altering

system files always involves risks, since you have no way to know for certain what software might be

detrimentally impacted. Also, it is not reliable since the customised codepage file could potentially be

re

placed with a stock version whenever the user installs new software or software updates on the system. In

particular, both Windows 2000 and Windows Me are configured in such a way that they would

automatically reinstall the original version of the codepage

 file. If you really need to find a way to work

around this problem, however, and understand the risks, this is option is possible.

This discussion has focused on situations involving symbol

-

encoded fonts. As was seen in §

4

, th

ere are

other situations in which an export process may result in characters being converted into question marks.

This will happen whenever the codepage used for conversion does not support the Unicode character in

question.

Here is a user scenario for th

is case: Someone is creating a Thai document that is going to be distributed to

a number of people (i.e. the Word

DOC

 file will be distributed, not a printed version.) She prepares a draft

using Thai Word 2000 on Thai Windows 98, and then gives the documen

t to a co

-

worker to be checked.

The co

-

worker is using the US versions of Word 2000 and Windows 98. He concludes that the document is

ready for distribution, and decides to save the file in Word 6.0/95 format, thinking it might be more

portable. After they

 start handing out copies, however, they get reports back that the document contains a

lot of question marks, but no Thai characters. In this scenario, the Thai codepage should have been used

for the conversion but was not. This might occur either because

the codepage was not installed on the

user’s system, or because US Word 2000 was not making use of the codepage (possibly because support for

Thai characters did not make it into this version). The solution, in this case, would have been for the file to

be

 saved in Word 6.0/95 format using the Thai version of Word 2000.

In another scenario, a user is creating a Hindi document using the South Asia version of Word 2000

running on Windows 2000. They save the file in Word 6.0/95 format, however, and all of the

Devanagari

characters are converted to question marks. In this case, the Devanagari characters were lost because there

is no Windows codepage for Devanagari. In this situation, there is no solution other than to stick with file

formats and software that su

pport Unicode.

28

8.

Problem: Lines wrap at any character rather than only at spaces

With symbol fonts that contain minority

-

language orthographic characters or

IPA

 symbols, Word has

always given occasional problems with line wrapping and with word selection (i

.e. what happens when you

double

-

click on a character or when you hit the left

-

 or right

-

arrow key while the

CTRL

key is depressed).

Even so, a careful font developer could prevent a user using versions of Word prior to Word 97 from

having frequent problem

s with lines that inappropriately wrapped in the middle of a word by making the

right decisions about what characters to put at what codepoints

28

Another possibility might be to save the file as plain text encoded in Unicode, and then run the file through an encoding

-

conversion processor to convert from U

nicode to some 8

-

bit encoding that supports Devanagari, such as

ISCII

. The

resulting file could then be opened in Word 2.x, Word 6 or Word 95, and the text formatted with a custom font designed

for that Devanagari encoding. Of course, all of the style and

formatting information would be lost in the process.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

23232323

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

Word 97 and later behave quite differently with text that is formatted using a symbol font than did

previous ve

rsions, however. As a result, in Word 97 and later, line wrapping with symbol fonts has become

a serious problem.

In earlier versions, Word treated the characters in some ways as if they had the same properties as they

would if a non

-

symbol font had been u

sed. Specifically, earlier versions of Word made decisions about

what characters are word

-

forming characters using the current codepage regardless of whether the text is

formatted with a symbol font or a non

-

symbol font. This affects the behaviour of both

line wrapping and

word selection. Thus, suppose a font contains a

LETTER BARRED L

 at 0x97 (d151, assuming codepage 1252

for sake of discussion; i.e. , the font has a glyph for a

LETTER BARRED L

 encoded at U+2014). Word 95 and

earlier would evaluate that ch

aracter in terms of the current codepage (we’re assuming codepage 1252) and

would treat that character as though it were an em dash. The codepage tells Word that an em dash is not a

word

-

forming character, and that it is acceptable to wrap a line after an

em dash. If the

LETTER BARRED L

happened to fall in the middle of a word and that word was just too big to fit at the end of a line, Word

would wrap the line right after the

LETTER BARRED L

. Likewise, if a user double clicked on a letter in the

word to the

 left of the

LETTER BARRED L

, only the letters up to but not including the

LETTER BARRED L

 would

be selected rather than the entire word. If, however, the font developer avoided codepoints like 0x97 for

any word

-

forming characters, such behaviours would no

t have been encountered by the user.

In Word 97 and later, the rules are different. Since the text is formatted with a symbol font, all the character

values get translated up into the range U+F020

–

U+F0FF. Word no longer has any character set

information to

 associate with the text that can tell it anything about which characters are word

-

forming.

Accordingly, it simply applies a default rule which says, in effect, that every character is word

-

forming. The

effect of this on line wrapping is that Word tries to

 keep all the text together on a line but, if it can’t, it

breaks the line after whichever character provides the best fit. For word selection, double

-

clicking on any

character in a run of text that is formatted with a symbol font will cause that entire ru

n of text to be

selected.

What’s important to note in this is that, with a symbol font selected, even the space character, 0x20, gets

translated to U+F020, and U+F020 gets treated no differently than any other character in the range

U+F020

–

U+F0FF. (Try usi

ng the ShowUnicode

 macro to verify that symbol “spaces” are actually

U+F020.) Therein lies the basis for a solution which is conceptually very simple and gives very good

results: Change the U+F020 characters to U+0020, i.e. to something that Word will reco

gnise as spaces.

There are a couple of tricks to this: short of changing each “space” by hand, how do you get Word to find

instances of U+F020, and how do you get it to replace them with U+0020? We have seen how we can

search for U+F020. Consider the latte

r issue: Suppose we had a way to tell Word to insert a character

U+0020. Even so, with a symbol font selected, Word will simply translate this back to U+F020. As a result,

to make this work, we have to replace the U+F020 characters with U+0020 characters t

hat are formatted

with a non

-

symbol font.

So, the solution to this problem is to search for U+F020 and replace with U+0020 formatted with a non

-

symbol font. You can decide whether to do the search

-

and

-

replace throughout a document or only over a

range of s

elected text. The decimal equivalent of U+F020 is 61462.

Figure

20

 shows how the Find and

Replace dialog should appear (the Word 2000 dialog is shown):

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

24242424

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

Figure

20

: Find and Replace dialog for fixing symbol

 “spaces”

Note that the “Replace with” text is a space character and that it is formatted with a non

-

symbol font,

Times New Roman.

If you forget the decimal equivalent for U+F020, you can specify the “Find what” text another way: select a

symbol “space” ch

aracter in your text, copy it to the clipboard (

CTRL

-

C

) and paste it (

CTRL

-

V

) into the “Find

what” text box on the dialog. Or, in Word 2000, enter “f020” in the “Find what” text box and then press

ALT

-

X

.

To make things easier for you, we have provided a ma

cro that will do this for you. The FixSymbolSpaces

macro looks throughout a file for U+F020 and replaces it with U+0020 formatted in Times New Roman.

The macro assumes that you want to make this change throughout the document. It also assumes that the

docu

ment doesn’t use any non

-

symbol font that contains a character at U+F020. (If such characters

occurred in a document, you might not want to change them to U+0020, but this macro will always make

that change. It’s not very likely that you’d be using such a

font, unless you are explicitly making use of the

Unicode Private Use Area, however.) Also, in its current version, the macro doesn’t give any option of what

font is used for the replacement spaces.

To use the macro on the active document, simply run it.

W

hatever method you use to change the spaces, just remember that if you insert any new spaces into your

document that are formatted with a symbol font, you may want to fix those as well.

9.

Problem: Certain characters in fonts don’t work after switching from W

indows 95 to

Windows 98 (or later)

As users started switching to Windows 98, we starting getting reports of font “not working” in the new

version. These situations all involved custom fonts, and always involved codepoints 0x80, 0x8E and 0x9E

(d128, d142, d

158) in codepage 1252.

In the spring of 1998, Microsoft revised various codepages, including codepage 1252, to add support for

the euro currency symbol. In the case of codepage 1252, two other additional characters used for some

European languages, “Ž

” an

d “ž

”, were also added. This was first introduced as a patch to Windows 95

(W95Euro.exe) and as part of service pack 4 for Windows NT 4, and it became a standard part of all

subsequent versions of Windows, beginning with Windows 98.

The crucial effect of t

his update to codepage 1252 was to change the 8

-

bit

-

to

-

Unicode mapping for the

three codepoints mentioned. The old and new mappings are shown in

Table

2

:

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

25252525

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

codepage 1252

codepoint

old Unicode value

new Unicode value

0x80

U+0080

U+

20AC

0x8E

U+008E

U+017D

0x9E

U+009E

U+017E

Table

2

: Changes in codepage 1252 when support for euro was added

This change affected some custom

-

encoded fonts that had been created in accordance with the old

mappings. As mentioned a

bove (see notes

2

 and

8

), TrueType fonts on Windows have always internally

been encoded using Unicode. Thus, even when an application was working with 8

-

bit text, the operating

system would have t

o use a codepage to convert the 8

-

bit codepoints to Unicode before accessing glyphs

inside a font. For standard

-

encoded fonts, font developers would create the fonts so that the glyphs were

accessed using the appropriate Unicode values for the characters b

eing represented. In custom

-

encoded

fonts, however, glyphs are in fact assigned according to some particular Windows codepage, usually

codepage 1252. In other words, in order to access a glyph for (say) “�

” using a codepoint of (say) 0xB5

(d181), the glyph

 would be encoded in the font using the Unicode value that corresponds to 0xB5 in

codepage 1252, which is U+00B5.

So, a custom

-

encoded font is built assuming a certain set of codepage mappings to Unicode, and it is

assumed that the font will be used on a s

ystem that has those same codepage mappings. If the codepage on

a particular system is changed, however, so that it no longer matches the assumed mappings, the font will

not work as intended. In the case of codepage 1252, this is exactly what happened: the

 codepage on users

systems was changed.

For example, someone might have a Devanagari font that was designed to have d128 (0x80) display “�

”.

Since the font was originally designed for use with Windows 3.1, it assumed the original definitions for

codepage 1

252. Inside the font, this glyph is accessed via the Unicode value U+0080. On a Windows 3.x or

original Windows 95 system, whenever a character d128 was entered in a document, this would get

translated by the application or the operating system into U+0080

 using codepage 1252. Suddenly, this

user upgrades to Windows 98, however, and their system now has a new version of codepage 1252. When

they enter d128 into a document, it no longer gets translated into U+0080; instead it is translated into

U+20AC. But, t

his font does not contain any glyph that is accessed via U+20AC. The end result is that the

default glyph, “�

”, is displayed instead.

There are a couple of solutions to work around this problem, but the preferred fix is to modify the font so

that both the

old and new Unicode values present the same glyph. So, in the preceding example, the font

would be changed so that the glyph “�

” is accessed by both U+0080 and by U+20AC. This way, the font

works as desired regardless of whether the old or the new version of the codepage is installed on a system.

Details of the solutions, along with more detail regarding the problem, can be found

 in Hallissy (1998).

There is one implication specifically for Word 97 and Word 2000 that should be mentioned: since Word 97

arrived before the changes to the Windows codepages were made, you may have documents that were

created using the original codepage

 definitions. Recall that, in Word 97 and later, 8

-

bit character codes are

converted via a codepage as they are entered. So, for example, if you created a document in Word 97

running on (pre

-

euro patch) Windows 95 using a custom

-

encoded font, then you may

have entered

characters d128, d142 or d158 into the document. If so, then these codepoints were converted into Unicode

values at that time.

This would only be an issue in using custom fonts, and it is not likely to be a problem in most cases since

the old

 fonts can still be used to view the existing documents, even if they have not been modified to work

with the new codepage definitions. In certain situations, this could be a concern. For example, the
AllChars97.dot

 and Codepg97.dot

 templates that have bee

n used by some within SIL to create

charts that show the character sets of custom fonts were created in Word 97 on Windows 95 using the

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

26262626

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

original codepage definitions. As a result, they would not necessarily reflect the output that a user might

get when usi

ng a custom font on Windows 98. Fortunately, this kind of problem is unlikely to affect many

people. It can be frustrating and misleading for the few it does affect, though.

10.

Problem: Word 2000 displays text with a different font that the font used to forma

t the

text

One of the consequences of using Unicode is that it is now much easier to provide true multilingual

—

and

multi

-

script

—

support in applications. Nearly 50,000 different characters are defined in version 3 of

Unicode, and documents created in progra

ms like Word 2000 can potentially contain any number of them.

This raises a potential concern, however: there are several problems with creating and using fonts that

support the complete range of Unicode characters, and font developers generally have very

little interest in

doing so. But then, a user might receive a document or view a web page containing characters that are not

supported in any of the fonts installed on their system. In that situation, text displayed with a default font

would be illegible;

that is, as nothing but empty boxes. Companies like Microsoft and Apple consider that

to be an unacceptable user experience, and are working to find solutions to this problem.

The solution

MS

 has adopted in Office 2000 involves a technique they refer to a

s

font linking

. They

distribute their software with a collection of fonts that together cover a significant portion of Unicode (all

of those ranges of Unicode that they have chosen to support). The idea is that, if the user’s fonts don’t

support all of the

 characters in a document, then this collection of fonts can be used to at least make the

document legible. When software gets some text to be displayed, they examine the characters in the text

and then try to ascertain whether the font(s) that the user ha

s chosen for displaying the text provide

support for those characters. They apply various heuristic tests for this purpose, and if these tests conclude

that the selected font does not support the given characters, then they will link up one of the fonts

di

stributed with the software to display the text.

What this means is that text will not always be displayed with the font you want. It is a particular problem

where custom

-

encoded fonts have been used: because these are custom fonts, there is probably a hi

gher

likelihood that they will fail the heuristic tests for some portions of the text. In that case, those portions of

the text will be displayed using a stock font that will not have the custom character set, and the resulting

text will not be completely

legible. This is a feature that benefits 99.9% of Microsoft’s users, but it can be

frustrating for someone using custom

-

encoded fonts. What makes this problem particularly difficult is that

the only workaround for using the custom font is to revert to earl

ier versions of software; for example, to

stop using Word 2000 and use Word 95 instead.

Font linking can also affect some Unicode

-

conformant fonts as well, specifically fonts for ranges in

Unicode that were not specifically part of the feature set for Wor

d 2000. For example, Word 2000 was not

designed to be used with Yi or Ethiopic characters, and so was not tested using characters from these

scripts. In working on fonts for Yi and Ethiopic scripts using Unicode encoding, I found that Word 2000

was substit

uting other fonts. In fact, the fonts that Word was using in place of our Yi and Ethiopic fonts

also did not support those character ranges, and so the text would display as empty boxes. Again, this

simply was not a situation that they designed or tested f

or.

Font linking has been used in MS Office since Office 97, in Publisher at least since Publisher 98 (I think it

was also used in Publisher 97), and in Internet Explorer at least since version 5.0. Thanks to influential

contacts that we have in the MS Off

ice development group, it will be possible to disable font linking in

Office 10 using a registry setting. Also, we know that testing will be done for all Unicode ranges in the next

version of Office, and so the problem should not arise in the case of fonts

 for Unicode ranges such as

Ethiopic and Yi that are otherwise not yet fully supported by Microsoft.

Starting with Windows 2000, however, font linking has been introduced into Windows itself. Since the

feature has been developed independently for Windows,

 disabling it for Office may not be enough if

Windows itself is making font substitutions. It would still be an issue as well for Internet Explorer running

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

27272727

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

on any version of Windows. This problem will not likely go away entirely, though hopefully as Unicod

e

support improves and as users adopt Unicode

-

based solutions, incidents will become infrequent.

11.

Problem: Word 2000 does not allow text to be formatted with certain fonts

Users may find that Word 2000 does not allow text to be formatted with certain fonts.

 This behaviour is a

minor issue and is related to font linking. It primarily affects Unicode

-

conformant fonts that support

ranges of Unicode that are not specifically supported in Office 2000.

The various scripts supported in Word are of a few different

types, each having particular characteristics,

and Word provides some specific behaviours for each type. Depending upon what language support is

enabled (set in the separate MS Office Language Settings applet), the Format/Font dialog may show three

differe

nt list boxes to select fonts, one each for Latin script fonts, Asian fonts, and complex (right

-

to

-

left)

script fonts. Thus, text can actually be formatted with three different fonts simultaneously, though each

applying to distinct Unicode character ranges

.

Word uses information inside fonts to determine which of its three categories a font fits in, and compares

this with the selected text. When selecting a font from the font list on the toolbar, if Word’s heuristic tests

conclude that the font is for a di

fferent category than the selected text, it will not apply the change to the

text. This may occur even if the font that was chosen does support the characters in the selected text. If you

look in the font dialog, however, you will find that the font that w

as chosen has been applied for a different

category of characters.

For example, the SIL Yi font supports Yi script but also the Latin characters of ASCII. Word categorises this

font as an Asian font. If a string of English words is selected (i.e. the stri

ng contains only ASCII characters),

we would expect that we should be able to apply that font to the text. Word will apply that font, but only for

Asian characters, however. The English, Latin characters will still be formatted with the original font. To

s

ucceed in actually formatting the Latin text with the selected font, it is necessary to open the font dialog,

select the SIL Yi font as the Asian font, and set the Latin font setting to “(Use Asian text font)”.

This behaviour is not likely to be a serious

 problem for many users, and behaviour is likely to improve as

Unicode support in Word matures with future versions.

12.

Problem: Certain characters are converted to sequences like “(

c

)” when file is saved as text

This is not a specifically Unicode

-

related pr

oblem, though it does involve issues of codepages and symbol

versus non

-

symbol fonts. It is also new in Word 97, and applies to Word 2000 as well.

With symbol fonts, we explained that, in exporting to text, the system has no way of knowing what the

individ

ual characters are and so everything gets translated to question marks (with a standard codepage,

not with Martin’s modified codepage 1252). You would think that, if text was formatted with a non

-

symbol

font, that Word should be able to translate from the

Unicode values back to 8

-

bit values without difficulty.

In principle, this is true.

In certain particular situations, though, it may actually be preferable to get equivalent substitutes rather

than the original character; for example, to replace the curly

 quotation characters with straight quotation

marks. This might be true, for example, if a file had to be interpreted by processes designed for 7

-

bit

ASCII

.

For whatever reason (probably because it was helpful to some significant group of customers), someo

ne at

Microsoft at some point decided that, when a file is saved to text, certain substitutions from codepage 1252

should occur, replacing characters using only characters in the

ASCII

 range. Since this applies to codepage

1252, it affects only text format

ted with non

-

symbol fonts. A complete list of changes that are made is given

in

Table

3

.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

28282828

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

Character

codepoint

description

gets converted to

character(s)

codepoint(s)

description

…

x85

ellipsis

...

x2E x2E x2E

sequence of three p

eriods

‘

x91

left single curly quotation mark

'

x27

apostrophe

’

x92

right single curly quotation mark

'

x27

apostrophe

“

x93

left double curly quotation mark

"

x22

straight double quotation mark

”

x94

right double curly quotation mark

"

x22

straig

ht double quotation mark

–

x96

en dash

-

x2D

hyphen

—

x96

em dash

-

x2D

hyphen

™

x99

trademark sign

(tm)

x28 x74 x6D x29

sequence of

ASCII

 characters

xA0

non

-

breaking space

x20

space

©

xA9

copyright sign

(c)

x28 x63 x29

sequence of

ASCII

 charac

ters

®

xAE

registered trademark sign

(r)

x28 x72 x29

sequence of

ASCII

 characters

¼

xBC

fraction one quarter

¼

x31 x2F x34

sequence of

ASCII

 characters

½

xBD

fraction one half

½

x31 x2F x32

sequence of

ASCII

 characters

¾

xBE

fraction three quarters

¾

x33 x2F x34

sequence of

ASCII

 characters

Table

3

: Word 97/Word 2000 translation of codepage 1252 characters on export to text

Of course, if you are using a custom font that has a y with a circumflex over it at codepoint 0x99 (as

suming

a codepage 1252), you probably don’t want to have that codepoint replaced with “(tm)” when you export

your document to text.

Apparently, there are factors that determine when this will occur of which we are unaware. I ran tests on

two copies of Word

 97, both with the same version number and file date; one made these translations, and

the other did not. We have not been able to identify any setting in any dialog that controls this, though.

That is exactly where the design weakness lay: not giving user

s a way to control whether or not these

substitution should be made. This problem is being addressed in Word 10, however.

For now, there is a fairly simple way to get around this problem. If you have Martin Hosken’s modified

codepage 1252 installed on your

 system (see the previous section), then simply reformat all the text in your

document with any symbol font, such as Wingdings, just before you export it to a text file. Martin’s

modified codepage will cause all characters formatted with a symbol font to e

xport to text via a mapping

that preserves 8

-

bit codepoint identity.

13.

Problem: Certain characters do not work with Word 2000 when Arabic or Hebrew support is

enabled

There are a few known bugs in Word 2000 when support for a right

-

to

-

left script is enabled.

29

 The first of

these can be a serious hindrance for users who work with Arabic or Hebrew scripts and who also use

custom fonts or characters from the upper half of codepage 1252.

This first problem occurs if Arabic or Hebrew support is enabled in Word 2000

 and you are working with

settings for codepage 1252; that would be the case when using a keyboard layout for English or other

languages that use codepage 1252, or if using Keyman. When, these conditions apply, then Word will

convert the 8

-

bit codes d157,

 d253 and d254 as it receives them from the keyboard according to the Arabic

codepage (codepage 1256) rather than codepage 1252. The mappings to Unicode that should result with

codepage 1252 and the actual mappings that result in this situation are shown i

n :

29

This set in the separate MS Office Language Settings applet. Note that enabling right

-

to

-

left support in Office 2000 does

not require Arabic or Hebrew versions of Windows; right

-

to

-

left support in Off

ice 2000 can be enabled on any version of

Windows.

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

29292929

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

code from keyboard

codepage 1252

mappint to Unicode

actual mapping in

this situation

d157 (0x9D)

U+009D

U+200C

d253 (0xFD)

U+00FD

U+200E

d254 (0xFE)

U+00FE

U+200F

Table

4

: Incorrect codepage mappings with right

-

to

-

left suppo

rt enabled

The implication of this is that a user with a custom font that is designed to use d157, d253 or d254 (i.e. has

glyphs mapped from U+009D, U+00FD or U+00FE in the font) will not see the glyphs that they expect

(unless the custom font was designed

 to work on an Arabic system using codepage 1256). This problem

can affect users even if they are not using custom fonts: if you need characters d253 “ý” or d254 “þ” from

codepage 1252 (in codepage 1252, d157 is undefined), these cannot be entered into a d

ocument.

The erroneous mapping appears to happen regardless of how the characters are input from the keyboard.

In testing, it happened both when using the United States 101 keyboard layout and entering the characters

with

ALT

-

key combinations, and also wh

en using the United States

-

International keyboard layout, which

defines keystrokes for d253 and d254. On the other hand, the error appears not to happen when codepage

1252 is not active. In testing, it did not happen when using keyboard layouts for Polish

or Vietnamese,

which activate codepages 1250 and 1258 respectively. Unfortunately, that does not necessarily help users:

codepages other than codepage 1252 will not provide the mappings to Unicode that are usually assumed by

custom fonts. Also, for those t

hat require the “ý” or “þ” characters in codepage 1252, using another

codepage obviously will not necessarily provide the combination of characters that they need.

This problem pertains to character input from the keyboard only. It does not affect importi

ng of data from

text files, nor does it affect exporting to text files.

The following are possible workarounds at this point:

•

Avoid these three codes.

•

Devise some alternate way to enter characters, e.g. using Word macros, that enters the Unicode values

di

rectly.

•

Disable Arabic support.

•

Revert to an earlier version of Word.

•

Redesign your custom font to work with a different codepage than 1252 (not recommended as there

are several potential complexities that we have little experience with).

It should be reit

erated that this problem will affect you only if Arabic or Hebrew support is enabled. Thus,

many users can disregard this issue entirely.

14.

Problem: Character code d211 does not work properly when running on Thai Windows

95/98

This is not actually a problem

 in Word 97 or Word 2000, but rather is a bug in Thai Windows. It relates to

our general topic of encodings, codepages, Unicode and fonts, and it has presented problems for some

using custom fonts in Word 97 or Word 2000 on Thai Windows. Thus, it seems app

ropriate to mention it

here. The symptom is that, when codepoint d211 (0xD3) is entered into a document, a pair of glyphs

appear that are different from the glyph expected for d211.

The source of the problem comes from certain code that was used in Thai Wi

ndows 3.x to handle

rendering of Thai script. One of the vowels in Thai script,

sara am

, is a digraph that has one part written

above the syllable

-

initial consonant, and another part that is written as a full character that sits on the

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

30303030

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

baseline: “ ำ

”. Each

 of the components of this digraph is a distinct character in Thai script, and so each

would have its own glyph in a font. To handle the display of sara am in Thai Windows 3.x, it was decided to

replace the single character with the sequence of characters

that represent the two components: d210,

d237. This was all done internally to Windows, and so was invisible to the user.

Thai Windows 3.x implemented support for Thai script using custom

-

encoded fonts that assumed the

codepage mappings defined in codepage

 1252 (a surprising hack, actually, for software published by

MS

).

To prevent the transformation of d211 from happening with standard fonts that conform to codepage 1252

and Unicode, a special flag was set inside the font that only Thai Windows would recog

nise. When that flag

was set, it would apply the transformation; otherwise, it would not.

In the Thai version of Windows 95, the implementation of Thai script support was redone to make it

conform to Unicode and the standard definition of codepage 1252. Th

is meant that all of the code for

handle the complex rendering rules of Thai script should have been replaced. Somehow, however, the bit

of code that changed d211 into the sequence d210, d237 was overlooked. My understanding is that it is still

there in Th

ai Windows 98.

I have not had opportunity to test the Thai versions of Windows 95 and Windows 98, so I do not know

whether it affects all fonts or only certain fonts. I do know, though, that it is not limited to fonts that have

the special flag that was us

ed to indicate a Thai font in Windows 3.x.

Unfortunately, the only solution to this problem on Thai Windows 95/98 is either to avoid character code

d211, or to switch to another operating system. For someone creating a custom

-

encoded font, they may be

able

 to stay clear of this problem codepoint. That does not necessarily help someone using a font that was

created by someone else, however. A good alternative for users to consider is to switch to Windows 2000,

which provides support for Thai script (and seve

ral others), and does not suffer from this problem.

15.

Working in a Unicode world

The advances that

MS

 has made in Word 97 and, especially, Word 2000 offer important benefits for

working with multilingual text. In Office 95, there were no real solutions for

certain situation, such as

mixing Chinese and Arabic text in a single file. In the span of a few years, we have gone from Word 95, with

limited ability to create documents that mix languages and no real ability to mix significantly different

scripts, to Wo

rd 2000, which makes it possible to mix text in a large number of languages involving several

of the world’s major scripts. Of course, we have seen that there are still bugs, and the goal of one global

product that supports the scripts of all of the market

s they have targeted still has not been met.

Nevertheless, progress has been considerable.

Even so, the world’s languages span thousands of varieties, and users in many cases still find that the

writing systems in which they are interested are not adequate

ly supported. Many users with multilingual

needs also depend on software tools from other sources that do not yet match the multilingual capabilities

of Office 2000. As a result, many users continue to work with custom

-

built solutions using non

-

standard

ch

aracter sets and encoding.

It is these users who are confronted by the most serious problems. Yet the very source of most of these

problems comes from the fact that they are going against the encoding standards that are increasingly

being assumed.

For the

 computer industry, Unicode and related technologies are seen to be the way of the future, and

industry support for these technologies is growing at an increasing rate. There is no possible long

-

term

solution to the symbol font problems. There is also no i

ncentive for Microsoft to abandon font

-

linking

techniques, which address real concerns in a way that helps the vast majority of their users. The only long

-

term solutions for us to avoid these serious problems will come as commercial software from companies

like

MS

continues to adopt these standards and grow in multilingual capabilities, and as we abandon the

Unicode Issues in Microsoft Word 97 and Word 2000

Page Page Page Page

31313131

 of of of of

31313131

Peter

G.

Constable

October

23

,

2000

 Rev:

3

non

-

conformant practices we have come to depend upon and to begin adopting the same standards and

technologies.

There are certainly concerns for us to

consider in this. The biggest of these is that we are still in transition:

some tools based on the newer technology paradigms are available now, but not all that we need. As long as

we still need to depend on older software tools, we will face challenges o

f trying to move back and forth

between the old and new, and of continuing to try to find multilingual solutions using those old

technologies.

Fortunately, this course of action holds many more benefits for us than it does concerns. The new

technologies av

ailable in Windows

-

 Unicode and smart fonts

-

 are some of the very things we have needed

all along. They alone don’t meet the needs of all minority languages, but they do provide the basis that will

allow us to build effective and long

-

term solutions for

each of these languages.

16.

Contacting NRSI

To obtain copies of either of the files that were mentions, the macros template or the modified version of

codepage 1252, contact the NRSI at:

nrsi_ipub@sil.org

17.

References

Constable, Peter. 1997. Unicode capability

in Microsoft Word 97.

NRSI Update #5

. Also available in

International Publishing Services (1998) and in SIL International (2000).

——

.

1998. Unicode Issues in Microsoft Word 97 and Word 98. Available in International Publishing

Services (1998).

——

.

2000a. F

ont issues in MS Windows & Office.

NRSI Update #13

. Also available in SIL

International

(2000).

——

.

2000b. Understanding characters, keystrokes, codepoints and glyphs: Encoding and working with

multilingual text. Available in SIL International (2000).

——

.

2000c. Understanding multilingual software on MS Windows. Available in SIL International (2000).

Hallissy, Bob. 1998. The BoxChar Mysteries presents… The €

uro case. Available in International

Publishing Services (1998), and also in SIL International (2000)

.

Hosken, Martin. 1997. Windows and codepages.

NRSI Update #8

. Also available in International

Publishing Services (1998), and in SIL International (2000).

International Publishing Services, 1998.

Resource Collection 98 CD

. Dallas: Summer Institute of Ling

uistics.

Kano, Nadine. 1995.

Developing international software for Window 95 and Windows NT

. Redmond, WA:

Microsoft Press. Also available online at at

http://msdn.microsoft.com/libra

ry/books/devintl/S24AE.HTM

.

Microsoft Corporation. 1997. WD97: Symbol characters change to box characters. Microsoft Knowledge

Base article,

ID

 Q160022, available at

http://sup

port.microsoft.com/support/kb/articles/q160/0/22.asp

.

SIL International. 2000.

CTC Resource Collection 2000

. (

CD

-

ROM

.)

 Dallas: SIL International

http://msdn.microsoft.com/library/books/devintl/S24AE.HTM
http://support.microsoft.com/support/kb/articles/q160/0/22.asp

	1. Introduction
	2. Character sets and codepages
	3. Symbol fonts and non-symbol fonts
	4. Unicode support in Word
	5. Viewing stored Unicode values, entering specific Unicode values and searching for Unicode values
	6. Problem: Text appears as boxes
	7. Problem: Text appears as question marks when file is saved to Word 6.0/95 or other formats
	8. Problem: Lines wrap at any character rather than only at spaces
	9. Problem: Certain characters in fonts don’t work after switching from Windows 95 to Windows 98 (or later)
	10. Problem: Word 2000 displays text with a different font that the font used to format the text
	11. Problem: Word 2000 does not allow text to be formatted with certain fonts
	12. Problem: Certain characters are converted to sequences like “(c)” when file is saved as text
	13. Problem: Certain characters do not work with Word 2000 when Arabic or Hebrew support is enabled
	14. Problem: Character code d211 does not work properly when running on Thai Windows 95/98
	15. Working in a Unicode world
	16. Contacting NRSI
	17. References

