Script Conversion

By Jeff Heath

We'll be talking in this session about script conversion.

Script Conversion

Converting from one Alphabet to another
An Alphabetis

“A set of letters or symbols in a fixed order used to

represent the basics f speech sounds of a language”
https://en ® Oxford Dictionaries Online

What does the letter “k” in the English alphabet mean?
How would you represent that in the Arabic alphabet?

5
Probably with the letter kaf “ "J =

Script Conversion is basically converting a text from one Alphabet to another.

Who can give me a definition of Alphabet?

0O Oxford says that an alphabet is...

0O So what does the letter “k” represent in the English alphabet? The sound [k]. Voiceless
velar plosive.

0 How would you represent that in the Arabic alphabet?

O Probably with the letter kaf.

Script Conversion

How would you write “kitaab” (book) in Arabic script?

QUS

Probably something like: ™% =

How would you convert the one to the other?

Let’s look at a little bit bigger chunk of text. How would you propose writing the word
“kitaab” in Arabic script?

O Here’s one possibility, if you're fully vowelling the Arabic script text

0 How do you think you could convert one to the other?

Search/replace whole word

Disadvantage: You would have to know all of the possible words in the language!
Search/replace individual letters?

What about “a”? It converts to two different things!

Or rather the long “a” converts to something specific, if we can grab the two of them
together.

Replacement Result

k — kaf

i — kasra

t — teh

aa — fatha alef

b — beh

2017 © SIL International

Let’s see what that looks like, if we replace individual letters, but make sure to treat the
long “aa” as a unit.

What do you think? Does it look good? Yes!

| trust that everyone knows the Arabic letters take different shapes depending on whether
they are word initial, word medial or word final, right? (So the TEH word final looks
different than the one between two letters.)

| want you to note something here: What direction is the Roman script written? Left-to-
right. What direction is the Arabic script written? Right-to-left. Did | do anything to make
that change? No! Because we are using Unicode and smart fonts, as soon as we change to
an Arabic letter the rendering engine knows that it is a strong right-to-left character and
draws it in the string of characters as such.

It is fairly common that once you convert a text you will want to change the text direction
of the entire paragraph, and we’ll see an example of that shortly.

Questions or comments?

Roman Script to Arabic Script

Roman script to Cyrillic script?
Cyrillic script to Arabic script?

Arabic script to Roman script?
Roman script to Chinese script?

So the example that we just did was basically a letter-to-letter Roman script to Arabic script
conversion.

That’s the kind of conversion that we will mostly be focusing on.

But just to expand your minds a little bit...

0 Do you think you could use the same technique for Roman to Cyrillic script conversions?
Yes

O Cyrillic to Arabic? Yes

O Arabic to Roman? Yes — you might have some different issues, but it’s still the same kind
of conversion

0 Roman to Chinese? No — why not? Because it isn’t an alphabet in the same sense. We
could still perform a conversion, but it would be more word-to-word instead of letter-to-
letter.

Replacement Result

k — kaf

i — kasra

t — teh

aa — fatha alef

b — beh

OK so we’ve found a technique that seems to work fairly well for our conversion, but we
don’t want to have to do a bunch of manual search and replace operations whenever we
want to do a script conversion. Fortunately we can take advantage of a tool called SIL
Converters that has been created for a similar sort of operation.

SIL Converters: Unicode Conversion

What is Unicode?

Unicode is an international standard that provides a
unique code for every character in every script.
Character encoding - Legacy font (Tchad 2000)

4 Suldi doy Raa y’ikkima pay ep t’urzi... gette duwo an
d’uune toore kono an di suune munda wede derety.

But if you didn’t have the font...

4 Sul@i PoY Raa y’ikkima pay eY t'urzi... gette @uwo an
d’uune toore kono an di suune mun@a wede Derety.

2017 © SIL International

| believe SIL Converters was primarily created to perform Unicode conversions.

0 And since you’re all Unicode experts now, who can give me a short definition of Unicode?
O Unicode is an international standard that provides a unique code for every character in
every script.

0 Back in the old days before Unicode, we had fonts that were limited to 240 characters or
so, so we arranged characters as best we could to try to get access to all of the special
characters that we needed for our region. These are called Legacy Fonts, and we created
one in Chad called Tchad 2000, and we created a special keyboard to be able to type
characters in that font.

0O Then we could use those to type text like this verse from the book of John in a language
of Chad.

0O But if you send that text to someone who doesn’t have that specific font, what happens?
O You might end up with something like this. This is because the font they are using does
not have the same encoding, or the same understanding of those 240 characters. Some of
the characters are still the same, like a to z and punctuation. But many of the special
characters like implosive d and eng have been garbled.

With Unicode, each character has a unique code, so when you use Unicode fonts, you can’t
have this kind of confusion any more, which is a very good thing!

Maba sample in Tchad 2000 font

alin aa ari edig tee sup irii osur oroo uson uug siren
aday toray okoy tuy andaw kerew ziw yow

Unicode ﬂ

bereg peg tap jig njirka caak ynicode values of:
diwiwi ndulug rivali zibdag | Y*®° eg
sin) chiim nomoriyvog ngorbo o

farjee gurig kochombor laar oKl

mandakal mbaar niteg nereg

hilleg wasig yowyowdag

Converted to Unicode (Charis SIL Compact font)

alin aa ari edig tee sup)irii osur oroo uson uug siren
aday toray okoy tuy andaw kerew ziw yow

1 " .s TN | 1

So if we have a document that was written with the Tchad 2000 font, like this text in the
Maba language of Chad, we can run an SIL Converter on it that changes the Tchad 2000
encoding to the Unicode encoding.

That’s been done here, so under where it says “Converted to Unicode”, you see the same
text as above, but now it is in the Charis SIL font, with Unicode encoding.

Two eng characters have been selected from the same position in these parallel texts, one
in Tchad 2000, and one in Charis SIL. When a tool is run to show the underlying character
codes, it shows that although the characters basically look the same, they have different
underlying codes. The underlying code of the Tchad 2000 eng character is hexadecimal DD
— but Unicode says that code means Y with acute accent. The code hexadecimal 14B is the
correct Unicode code for the eng, and that’s the result after the conversion to Unicode.

Is anyone here not familiar with hexadecimal numbers? (Explain offline, basically numbers
0-9, letters A-F. For our purposes you can just think of them as a series of numbers and
letters that you need to copy.)

SIL Converters

Unicode conversion:

Changing the underlying character codes
Script conversion:

Changing the letters

SIL Converters engine
LibreOffice Writer, MS Word, FieldWorks, Paratext

So Unicode conversion is just the process of changing the underlying character codes of
text, character-by-character, to conform with the Unicode standard.

0 And what we want is the conversion to Arabic script, letter-by-letter.

0O And it turns out that we can use the same SIL Converters tool to accomplish this task. SIL
Converters really is more of a conversion engine, which can be used from a number of
programs like the ones mentioned here.

But let’s jump right in with an example of converting Roman script to Arabic script in
LibreOffice Writer.

[= Untitled 1 - LibreOffice Writer

File Edit View [nset Format Styles Tgble Tocls Linguistics Window Help
3 i a
F-B8-EB- 100 « %64 -

Text Body v -{‘r" b Charis SIL Compac v

=

Q> 1 /=-.
vaacaa abay ¢ -2 -

»

- |

x

BasicAddonBuilder

==
0= =

Pt

»

A

bereg peg tay jig njirka caaka
diwiwi ndulug riyali zibdag drabag trepdag ndrekeg
sin) chiim norgoriyog ngorbog

farjee gurig kochombor laar

mandakal mbaar niteg nereg

hilleg wasig yowyowdag

alin aa ari edig tee sur irii osur oroo uson uug siren
aday toray okoy tuy andaw kerew ziw yow

bereg peg tap jig njirka caaka

diwiwi ndulug riyali zibdag drabag trendag ndrekeg
si) chiim goryoriyog ngorbog

farjee gurig kochombor laar

mandakal mbaar niteg nereg

hilleg wasig yowyowdag

Here we have our Maba text again, and we made a copy of the Unicode text, and pasted it
under this title that says “Converted to Arabic Script”, and I've selected the text that | want
to convert to Arabic script.

Note that | have a menu here named “Linguistics”. That’s because | installed the Linguistic
Tools add-on.

& Untitled 1 - LibreOffice Writer - o IEN]

File Edit View [nset Format Styles Table Tools Lngm:x Window Help b4
-3 -E - = 0 By Ehonology Settings Abg F= - » BasicAddonBuild
E-8@-dea Ky s | g qm
. | Text Body \rI \(‘ﬁ" <L ChmsSlLComparl Grammar Settings =3 d’ ﬁ, q é' > - ::: - ;:: - »
T 1 i F 1 A Get Grammar Examples "B T T 5 p A
- . . b “ Listof Abbreviations h h o - . -
bereg pes ta g ko
diwiwi ndulug riyali zit i i drekeg
. . .. = Word List and Spelling
- sin chiim gornoriyog 0§ ;. Spelling Changes
- farjee gurig kochombor Script Practice
__ mandakal mbaar niteg{ .,
T hilleg wasig yowyowdag
p Canvartad to Avahis Comet
Converted to Arabic Script

alin aa ari edig tee sup irii osur oroo uson uug siren
aday toray okoy tuy andaw kerew ziw yow

bereg peg ta) jig njirka caaka

diwiwi ndulug riyali zibdag drabag trendag ndrekeg
sip chiim porporiyog ngorbog

farjee gurig kochombor laar

mandakal mbaar niteg nereg

hilleg wasig yowyowdag

So | click on that Linguistics menu, and select Data Conversion

Data Conversion

Converter name (SIL Converters must be installed.)

[] Reverse direction

Scope of change
_) Whole Document
(_) Current selection

(® Font (not including styles):

v
(® Standard () Complex () Asian
() Paragraph style:
v
() Character Style:
v
() Backslash marker(s):
\tx\mb

| [elect.]
No converter

Target data

(®) Do not change style or font

() Paragraph style:
v
() Character Style:
v
Font for the style: Size:
(@) Standard () Complex () Asian

() Change font without applying a style

[] Ask before making gach change

Close and Conyert Cance]

A window opens to ask me what kind of Data Conversion | want to do. The first field is the
Converter name. | click on the Select button to the right.

12

= Select Converter ?
Choose an existing converter from the list below or click Add New to add a new one: W Show ToolTips
Any to Latin
Arabic to Latin
Bambara SIL Charis<>UNICODE
Burkina Faso Winye-2003<>UNICODE
Camencon<>UNICODE
Chad35
RCI Standard Doulos/Sophia/Manuscript <>UNICODE
SIL-BF Font Famiy-2005<>UNICODE
SIL-BF_Times-2006<>UNICODE
SiL-Mak Standard Font Family<>UNICODE
SIL Togo-Banin Thh font famiv s UINICODE
Tehad2000
Conversion Opbons
r Reverse direction (for Normalize Output
bidirectional converters) & None
™ Debug " Eully Decomposed
" Fully Composed
Conyerter Installer oK Cancel

In the list of available converters, | select MabaAS, then click OK.

13

Data Conversion

Converter name (SIL Converters must be installed.)

MabaAS

["] Reverse direction

Scope of change
(_) Whole Document
(@) Current selection

_) Eont (not including styles):

W
(®) Standard () Complex () Asian
Paragraph style:
W
") Character Style:
W

Backslash marker(s):
\tx \mb

Select...

Mo converter

Target data

(L) Do not change style or font

Paragraph style:
v
() Character Style:
v
Font for the style: Size:
Scheherazade Compact v 24
() Standard @ Compled () Asian

(@ Change font without applying a style

[] Ask before making gach change

Close and Conyert Cance|

Now the Converter name is filled in. Under Scope of change | select “Current selection”.
And under Target data | tell it to Change to the Complex Scheherazade Compact font at 24

point without applying a style. Then | click on Close and Convert.

14

& Untitled 1 - LibreOffice Writer - 0

File Edit Yiew |[nsert Fgrmat Styles Table Tooks Linguistics Window Help ®
x g X E x ([@ L‘,_' = j v q "bf. ‘ﬂ = e » | BasicAddonBuilder
¢ | Text Body v| (8 (&) |schehennmadeComv| (20 v] @ @ d o ab dp & E ~ | EiE e

T = Y : 15 . 1A

5| s\ " ==
Hr i e Ead
w . I
0 aNEt 0o 1B A5
Ao APAE] Ay --A-'; o 2
Found 9 paragraphs and made 8 changes.

R

I PyEE et Es
;oateE 2wl
.‘l) ,x-.:-s J{J ;__,9_".;’

Fj g ol S

Gluw s b

It performs the conversion and gives a summary; here it found 9 paragraphs and made 8

changes. | click OK.

15

(=5 Untitled 1 - LibreOffice Writer -0

File Edit View |nsert Fgrmat Styles Table Tools Linguistics Window Help x
E-B-B-48 E-a - Q" § 55 -M » BasicAddonBuilder
Text Body v| (8B (X |[scheherazadeComv] 2¢ [v] @ @ Q L5 a? ab q 2 o) B e [

% : r S

alin aa ari edig tee sun irii osur oroo uson uug siren
aday toray okoy tuy andaw kerew ziw yow

bereg peg tay jig njirka caaka

diwiwi ndulug riyali zibdag drabag werdag ndrekeg
sify chiim porgoriyog ngorbog

farjee gurig kochombor laar

mandakal mbaar niteg nereg

hilleg wasig vowvowdag

Converted to Arabic Script

Then | select the Arabic script text that was produced, apply a Right-to-Left paragraph
format, and I’'m done!

Now that wasn’t so hard, was it?

As you can imagine, there are some more difficult things that have to be done to get to this
point, but once those harder one-time things are done — conversion to Arabic script can in
fact be fairly easy.

16

Eile Edit View [nset Tools Project Checking Window Help @ [Seach Hoo
- -G A~ BF -Edtionset < N v [1 o]0 a»] Nostye -] % % @88

dmid Injiil al-Masiih
ioms2 Al-juzu al-Yuuhanna katabah

s Mugaddima

i» Allah hu saalub al-nuur wa saalub al-hagg wa
hu bas al-yant: al-haya le I-naas. Wa hu rassal
al-Masith fi I-dunya achaan yanti le I-naas al-nuur
wa l-hagg wa l-haya al-abaditye. Wa hu rassalah

aaychiin fi 1-dalaam achaan hayyin le |-naas
yvukhuchchu nufuushum. Allah rassal Isa al-Masith
achaan yaftah le I-naas derb jadud al-beyah al-naas
vabgo iyaal Allah wa yi'iichu fi l-nuur.

'ip Wa da juzu waahid min Injul al-Masith. Wa hu

Lvachhad he kalaam waadih le I al-Masiih_* |

Before we get into a more complete understanding of the difficult things, let’s look at one
more simple thing which is pretty cool! Here we have a Roman script Scripture project in
Paratext 7.6 called Edition Jeff.

| Ele | Edit View Inset Tools Project Checking Window Help [JETET N
; NewProject... CeN N v/ 1 (do] o 4] Nostyle - éd @M
Open Project/Resource... Ctrl+0
Close
Save All Crl+S

Send/Receive Projects... Ctrl+Shift+S
Open Notes...

Open Project/R in Text Coll

Open Biblical Terms Rendenngs

Open Project Interlinearizer...

Open Source Language Text...

Open Source Language Dictionary...
Install Resources...

Backup Project
Restore Project

View Backup Log...

Let’s create a new project, selecting New Project from the file menu.

Full Name:
Short Name:

Copyright

Language:
Language |dentifier:
Versification:

Type of Project:
Based on:

Encoding Converter:

| Advanced

Edition Jeff Arabe

[EsA

[_ |
Chadian Arabic AS vE Editview...

shu

Engiish

Transiteration (using Encoding Converter)
EJF - Edition Jeff

MabaAS

This dialog shows you (and allows you to amend, if necessary) the settings for a project.

More help. .

Paratext asks us for the settings for this new project. Let’s call this project Edition Jeff
Arabe, set up the language information, then select the Type of Project as “Transliteration
(using Encoding Converter)”. Once you select that type of project, you have to select which
project it is based on, and we select Edition Jeff, and which Encoding Converter to use, and
we select MabaAS. When we click OK, what do you think we get?

19

File Edit View |[nset Tools Project Checking Window Help
o - -GG A~ DA -Edtionsef. + N v/ 1 (] 0 4] Nostyie

4 (A) EJF JHN 1:0 (Jeff Heath) =] |t (A) EJA JHN 1:0

~

id JHN
& Yuuhanna
wel Yuuhanna

mi2 Al-juzu al-Yuuhanna katabah

uis Mlugaddima

i Allah hu saalub al-nuur wa saalub al-hagg wa
hu bas al-yant: al-haya le I-naas. Wa hu rassal
al-Masuih fi I-dunya achaan yanti le l-naas al-nuur
wa |-hagg wa l-haya al-abaditye. Wa hu rassalah
awwai ie i-Yahuud wa iaakin kubaaraart ai-Yahuud
ma khiblooh. Induhum diin min Allah laakin
aaychiin fi I-dalaam achaan hayyin le l-naas
yukhuchchu nufuushum. Allah rassal Isa al-Masith
achaan yaftah le I-naas denb jadud al-beyah al-naas
vabgo iyaal Allah wa yi'iichu fi l-nuur.

i» Wa da juzu waahid min Injul al-Masith. Wa hu
varhhad he kalaam waadih s kubooriest al-Macih

v

We get a second Scripture project which is a complete conversion to Arabic script of the
first! And if we make changes to the source Roman script translation, there is a menu item
in the Arabic script project to refresh the transliteration, which will make sure they are in
sync again.

Is that pretty cool, or what?!

Now obviously there had to be some magic in there somewhere. Can anyone tell me where
the magic happened?

20

Full Name:
Short Name:

Copyright

Language:
Language |dentifier:
Versification:

Type of Project:
Based on:

Encoding Converter:

| Advanced

Edition Jeff Arabe

[EsA

[_ |
Chadian Arabic AS vE Editview...

shu

Engiish

Transiteration (using Encoding Converter)
EJF - Edition Jeff

MabaAS

This dialog shows you (and allows you to amend, if necessary) the settings for a project.

More help. .

It was in the selection of the Encoding Converter, in this case MabaAS. That’s where all of
the magic happens. And it’s the making of that Encoding Converter — what we call a
mapping file — that is the hard thing we have to do to make this magic happen. But the
good news is that that hard part, making that mapping file, only has to happen once! And if
we do a good job on it, it never needs to be touched again.

21

[Untitled 1 - LibreOffice Writer -0

File Edit View |nset Fgrmat Styles Table Tools Linguistics Window Help x
-B-EH- 443 E-a - -G " § BB » ! BasicAddonBuilder
Text Body v| (& (& ||scheherazadecomv] (¢ [v] @ & d o db dp q E o) B e [

5 . * 15 13 1 P E: b4 - "

alin aa ari edig tee sun irii osur oroo uson uug siren
aday toray okoy tuy andaw kerew ziw yow

bereg peg tay jig njirka caaka

diwiwi ndulug riyali zibdag drabag werdag ndrekeg
sify chiim porgoriyog ngorbog

farjee gurig kochombor laar

mandakal mbaar niteg nereg

hilleg wasig vowvowdag

Converted to Arabic Script

To build up to understanding what we need to do to get that mapping file, let’s return to
our Maba text that we converted. We're going to take a closer look at part of the first line
that was converted.

Maba RS -> AS

So here is part of the first line in Roman script, and the output from the Arabic script
conversion. To start with, I'd like you to make some observations about the conversion.
What do you notice about the texts or the conversion itself?

-I'll start you off: the RS text goes left to right, and the AS text goes right to left!

-Not standard Arabic, but most vowels/consonants use their normal MSA equivalents
-E, 0, n turn into non-standard characters, but ones that are compatible with MSA (e.g.
diacritics for vowels, eng is extension of ain character)

-Vowels at the beginning of a word need an alif hamza base to rest on

-Long vowels are made up of short vowel with waw or yah, except alef madda for long a
(but that’s word initial)

23

0600 Arabic DEFF

060 061 082 063 054 D65 066 OG7 0S8 089 0BA 0SB OGC 06D OGE 06F
..... - s e | €],
el . . 3 £ A Y B i
o)][] ey it =) g [.] O
p : 7 i
o s \ $ 21L0 - \
a0 P i R N [=3 I Led (5] B 4 o)
i 2 \ #lslalS] - L .
o 4 [=
ali|el sz]|]alS] e -
i el T]
= el Rl B Tl4 4
o [iy e i)) Rl o (e Y IS D] IS S BN
s = x
P Vieele | tl2]2]9)2]|" a
e | &= | o . - al 3 - "
v Sl o M EATIA R bd Ed B -
P PO = I P P I S P P P
3 \ i1 ©1 ol =]
v - MIFAIAPILAEA R ¥
mr o | ow | oo | wr o | || e | e || |
A !, alslalslaly 5
w b it I It M EAE
Pl O P PSR P P P el P) P I) P P
A ile s '\.'J:,—(.'_;: |4
N P I - e P P P P P P I I P e
I- >k | L EACdua EIEAE: -
N R I - - P [P [P (e [P e [P R
e o | X7 -) & :
4 ol b wll=|2]o] 3 "
< -3 J]51.e i
g Tl : P 3|&]| 2|0 1l
i = e Tl Talals el -.
ﬁhq o] bl - -
- 55 | e | oo | oo | oo | o | e | e f oo | o | e || |
v | # w |32 2] 2]a 3
] il]))t]] e e [
£|S]s |2 olels 8]z]5(8]5]s
Bl el bl ool lelelolelmwlels

2017 © SIL International

Thve Urcodie Saandord 9.0 Cepymight © 19972016 Unicode Inc Allighes reservod

Who can tell me what this is?

This is a Unicode code chart. Specifically this is the main code chart for Arabic script. If you
plan to do any script conversion, this is your friend! It starts at hexadecimal code 0600, so
it’s sometimes called the 600 code page.

24

0607 | 0617 0627 0637 0647 0657 0667 0677 0687

0608 0618 0628 0638 0648 0658 0668 0678 0688

0609 0619 0629 0639 0649 0659 0669 0679 0689
. / . L v . / %
Ay I < 0(3 [+ <2
” - '

060A 061A 062A 063A 064A 065A 066A 067A 068A

060B 0618 0628 0638 0648 0658 0668 0678 068B

If we zoom in a little, you can see that the code chart shows various Arabic characters —
some standard and some less so... —and it provides the unique Unicode code for each one.
O Let’s focus a bit on one character, the ARABIC LETTER TEH. We see here that this letter
has the hexadecimal code 062A.

Maba RS -> AS

Can anyone see where that letter TEH is used in the Arabic script line?

O In this word here. (Fifth from the right. Remember that Arabic letters change shape
depending on their position in the word!)

That corresponds to which word in the Roman script?

O “tee”.

So what would you say is the Roman script equivalent for the Arabic letter TEH? It’s the
letter “t”.

This leads us to the following...

26

2017 © SIL International

..what do you think this is, and what does it mean?

It is one line from our conversion mapping file, and it means that the letter ‘t’ gets
converted to the ARABIC LETTER TEH, which as we saw is Unicode code 062A.

It is part of the mapping file that accomplishes the conversion of Roman script to Arabic
script in the Maba language.

O This file is written in the TECkit language, which you could say is a kind of programming
language, but before you get too nervous, the TECkit language isn’t nearly as complicated
as a lot of programming languages. Every one of you here could create a mapping file if you
set your mind to it, even if you have avoided computer programming before!

And this one line is our first lesson in the TECkit language.

First we see that we can specify a Roman script character by putting it between quotes.
And we can specify a Unicode character by just putting a “U+” in front of the 4-digit
character code that you can find on the code page.

Next we look at the less-than and greater-than signs. These signs are used to indicate what
kind of conversions are allowed. The greater-than sign to the right means that the
converter can convert the ‘t’ to the Unicode character 062A. The less-then sign to the left
means that the converter can convert that TEH back to the letter ‘t’, if you ask it to reverse
the direction of the conversion. We’ll talk about that more later, but for the moment we
just say that these two letters are equivalent between the two scripts and we use both the
less-than and greater-than signs to indicate that we can convert back and forth between
them.

27

| MabaASmap x

; consonants

'b! <> U+0628

'p’ <> U+067E

L <> U+062A

iy <> U+062C

'nj’ <> U+0683

'c' <> U+0686

'd’ <> U+062F

'nd’ <> U+068LA

= <> U+0631

L <> U+0632

‘dr’ <> U+0694

'tr* <> uU+0€97

'ndr’ <> U+0698

‘a’ <> U+0633

'ch' <> U+0634

U+014B <> U+075D ; eng
U+014B 'g' <> U+06Aa0 ; eng-g
'E£° <> U+0641

"g” <> U+0642 2017 © SIL International

Now let me show you a little bit more of our TECkit mapping file. This is part of the MabaAS.map
file, for converting Roman script to Arabic script in the Maba language. On the fourth line down we
see our ‘t’ to TEH conversion line, and there are a number of lines that are similar to it, showing the
conversion from something in Roman script to a Unicode character on the Arabic 600 code page.
What else do you notice here, or what questions do you have?

Semi-colons: mark comments that don’t affect the conversion, like the comment at the top that
indicates that this is the section of the conversion mapping file that deals with consonants.
Everything on the line after the semi-colon is a comment.

Multi-character matches: It may not be just a single character that we need to convert, but a
digraph, or an even longer string. The rules are always tested from the most to least specific, so a
longer string would be matched over a shorter string. So, for example, if a “t” is followed by an “r”,
the two characters together will get converted to a Unicode 0697 — they won’t get converted
individually to a TEH and REH.

Unicode on left: For the lines where we want to convert the eng character, rather than typing the
eng between quotes, | chose to put the Unicode character code in, and then added a comment at
the end of the line to remind me that those are eng characters.

700 page: You may have also noticed that the Arabic script code for the eng is on the 700 code
page. There is a partial page there called Arabic Supplement, which provides some additional Arabic
script codes that couldn’t fit on the main 600 code page. Depending on the special characters you
need in your language, this page may also be your friend!

Question for you: Would the mapping file for your language be the same? Would it be similar? Why
or why not?

28

~_Each language needs itsown

unique TECkit mapping file for
Roman to Arabic conversion!

And just in case that wasn’t clear, let me say it again. “Each language needs its own unique
TECkit mapping file for Roman to Arabic conversion!”

29

File Edit View |[nset Tools Project Checking Window Help @ earch H

- & A - DA -EditionJeff. = JHN v |1 j_’l 2 j_’J p - Paragraph - Normal ~ | & n =
4 (A) EJA JHN 12 [&38] | 74 (A) ShuAS JHN 1:2 (Mahamat Zene, Judy Heat... | &2
~ ~
< T 5 i Al dods” c..».oJ._ |
I CAlS™ o dmnn »
?

Ry oo e & 8 8 Y 1
; . z ‘ ; ii lsels a Wt &F
J 3 306 25 Jl iy J Il AVl 3 (Blel AVl 4l 2

A s &3 D ps 5

= - E =
dle 08 J 5 i3 306 S
B < |- - J \ M W ;
22 3 % - .2 ;'L‘f j3 :J.!! 4 :LC-L’;J.-; Ejl_Lj'i _‘;:gz
57 AR S8 ey J c & =G
A S < A
e A vl (L NTCr il s LY S G 5 AU, O 0
7 (A) CABRS JHN 1:1 mm

Al-Masiih hu Kalimat Allah
! Fil-bidaaya al-Kalima gaa'ide. Wa 1-Kalima gaa'ide ma'a Allah wa 1-Kalima hi Allah. 2Fi
I-bidaaya hu gaa'id ma'a Allah | Wa kullajcheyy kawwan be 1-Kalima wa min kulla l-achya

11 e ol 11 Lol g BTY it it 11 i 1ol

As an example of that, do you remember that nifty AS conversion that | showed you in
Paratext before, | used the Edition Jeff project as the base, which happened to be just some
selections from the Chadian Arabic translation, like this Roman script at the bottom. On the
left here I’'m showing you the Edition Jeff Arabe that we produced. Do you recall the name
of the mapping file that we used? MabaAS! Hmmm... what language do you think that was
created for? Maba! OK, now on the right I've put the REAL Chadian Arabic AS text.

o If we look first at the beginning of verse 3 —it’s the same! But if we look pretty much
anywhere else...

O ...the texts are different.

What do you notice as differences?

Articles aren’t attached

Section heading is not vowelled

Allah

Vowels at the end of words are different

Use of some “special” vowels which aren’t used in Chadian Arabic

Glottal not handled

So what’s the take-away? Each language needs to have its own TECkit mapping file for
conversion to AS.

30

| MabaASmap x

i consonants

"o <> U+0628 |
'p’ <> U+067E

B= <> U+062A |
o <> U+062C

'nj" <> U+0683

e <> U+0686

ar <> U+062F

"nd" <> U+068A

r <> U+0631

2 <> U+0632

'dr' <> U+0694

rEx <> U+0697

|'ndr’ <> U+0698 |
s <> U+0633

‘ch' <> U+0634

U+014B <> U+075D

U+014B 'g' <> U+06A0

3 <> U+0641

g <> U+0642

; eng
H eng—g

2017 © SIL International

But | also want you to hear what I'm NOT saying! I'm NOT saying that each TECkit mapping
file has to be completely built from scratch.
O You probably don’t have an “ndr” trigraph in your language...

O but you probably have a “b” and it probably converts to a “BEH”.

O You probably also have a “t” and it probably converts to a “TEH".

0O So you can borrow lines or sections or ideas from other mapping files to build up the
mapping file that works for your language. And that’s what we’ll be doing this week for
each of you that wants to create a mapping file for converting Roman script to Arabic script

in your language.

31

How are we doing?

OK, time for a process check. Would someone like to try to summarize what we’ve seen so
far?

Unicode Arabic Script code page is your friend — to find characters you need to convert to
TECkit mapping file is a magical thing which can convert between RS and AS

It is unique to each language

Any questions?

32

| MabaASmap x

; consonants

'b! <> U+0628

'p’ <> U+067E

i s <> U+062a

i <> U+062C

‘nj’ <> U+0683

'c' <> U+0686

'd’ <> U+062F

"nd"’ <> U+068a

= <> U+0631

L <> U+0632

‘dr’ <> U+0694

'tr* <> uU+0€97

'ndr’ <> U+0698

‘a’ <> U+0633

'ch' <> U+0634

U+014B <> U+075D ; eng
U+014B 'g' <> U+06A0 ; eng-g
'E£° <> U+0641

"g” <> U+0642 2017 © SIL International

All we’ve seen so far in our TECkit mapping file is some simple replacements of consonants
or sequences of consonants. That’s the simplest kind of conversion — more or less a one-to-
one mapping.

. MabaASmap >

; take care of vowels next

; check long (doubled) forms first

; note that word initial forms are different

‘aa' / (#|[WordBreak]) = <> U+0622

‘aa' <> U+064E U+0627

‘a' / (#|([WordBreak]) <> U+0623 U+064E

‘af <> U+064E |

'ee' / (#| [WordBreak]) _ <> U+0623 U+065A U+064A
'ee' <> U+065A U+064Aa

‘e' / {(#i(WoxdBreak]) _ <> U+0623 U+065A

‘e <> U+065A

'ii' / (#| [WordBreak]) <> U+0625 U+0650 U+064A
viit <> U+06S50 U+064a

'i' [/ (#|[WordBreak]) <> U+0625 U+0650

e <> U+0650

‘oo' / (#|[WoxdBreak]) _ <> U+0623 U+065B U+0648
'oo' <> U+065B U+0648

‘o' [/ (#|[WordBreak]) _ <> U+0623 U+065B

'o! <> U+065B

But there are some more sophisticated things you can do in your mapping file as well. Let’s
look at a little more complex section — the section for converting vowels.

0O There are some mappings here that are the same as what we’ve already seen, like the
mapping between “a” and fatha.

0 And the mappings on the double vowels is similar. A double “a” just goes to a fatha
followed by an Alif.

O But what are these rules saying? What do you think this slash followed by some other
stuff is? Context — probably not a foreign notation to those of you who have done much
linguistics. It says that an ‘@’ in a particular context changes to a 0623 and a 064E (an alef
hamza and a fatha), instead of a simple 064E (a fatha). And what context is that? The
context where that ‘a’ appears after a WordBreak character or at the beginning of the text,
which is represented by the number sign. The underscore shows the place where the
character to convert would have to appear. So a word initial ‘a’ gets converted to an alef
hamza and a fatha.

34

Maba RS -> AS

And we can verify that in our sample Maba text. The first word begins with an ‘@’, so it was
converted to an alef hamza and a fatha.

35

eak])

What | didn’t show you yet is the definition of the WordBreak class. Character classes
may be used to make the mapping description more readable and concise. There
are a lot of different characters which could break words apart — some control
characters, punctuation, and spaces. So we try to make a list of all of the word
breaking characters that we might see.

o Some characters are just individual characters, like the 6 characters defined in this
first line. (The backslash just means that the mapping rule continues onto the next
line.)

O But the second line contains 3 character ranges. The double-period indicates that it
includes all characters from the first one given to the last. So that first range includes all
characters from 0020 hexadecimal up to 002F hexadecimal. How many characters is that?
It’s 16 characters that it adds to the character class.

0 Sometimes building up these character classes might involve a little bit of trial and error.
You put in what you think you need, and later on, you might convert a text and realize that
there is a word-breaking character which is not forcing the vowel following it to take its
word-initial form. In that case, you figure out its Unicode code and add it to your word-
breaking character list.

36

| MabaASmap

; take care of vowels next

; check long (doubled) forms first

; note that word initial forms are different

‘aa' / (#| [WordBreak]) _ <> U+0622

‘aa' <> U+064E U+0627

‘a' / (#|[WordBreak]) _ <> U+0623 U+064E

A <> U+00B4E

'ee' / (#|[WordBreak]) _ <> U+0623 U+065A U+064A
'ee' <> U+065A U+064Aa

‘e' / {(#i(WoxdBreak]) _ <> U+0623 U+065A

‘e <> U+065A

'ii' / (#|[WordBreak]) _ <> U+0625 U+0650 U+064A
viit <> U+0650 U+064A

'i' [/ (#|[WoxdBreak]) _ <> U+0625 U+0650

it i <> U+0650

'oo' / (#| [WoxrdBreak]) _ <> U+0623 U+065B U+0648
'oo' <> U+065B U+0648

‘o' [/ (#|[WordBreak]) _ <> U+0623 U+065B

o <> U+065B

So this is pretty cool, to be able to convert things differently depending on their context.
Give me some examples of how that could be useful. What other contexts might be
important?

Word initial, word final (e.g. suffixes), word entire, not followed by a certain class of
characters (e.g. vowel), consonant “colored” by a certain type of vowel, punctuation
surrounded by numbers

TECkit Map Unicode Editor

Select the font for the left-hand side encoding Select the font for the right-hand side encoding

Font _

Charts SIL Roguiar]
CharissiL_____| Scholar :

Charis SIL Compact 16 Sexipt MT

Charis SIL Literacy Segoe Marker

Charis SIL Literacy ' » Segoe Pn'v_t

We’ll be talking more about TECkit mapping files, but before we go any further, | wanted to
show you a tool that you might find helpful for editing your mapping files. Up to now I've
just shown you raw mapping files in a text editor. That’s often the way | work, but there is
also a tool called the TECkit Map Unicode Editor which is installed with SIL Converters that
you might appreciate using.

0 When you first start the program there are a number of dialog boxes that come up, first
to select the type of conversion — | would recommend selecting Unicode to Unicode and
bidirectional.

o Then you select a font for the left-hand side encoding, in other words our Roman script,
so Charis SIL is a good choice

o and then you select a font for the right-hand side encoding, that is for our Arabic script,
so Scheherazade is a good choice.

38

Character Map for Left-hand side Font 7

Ele | Edt Yeew Help Send 1o Edtor Recert Ranges
Compled muccesshuly ®) Unicode Names @ DO0C-007F
Urscode Vel
TECkasMappingEditorl.axe v4.0.0.0 on 1/33/30: A Custed Cran
Onans SIL
0 (1]2]sje|s jefr |8 3]|a]e |c o
0.0,680,71
ar Map Window Position = €88,0,487, 447 » 0000 .
racter Map Window Posizion = £58, 447,457, 447 |
“canonical name of the ‘source’ sncoding or left-hand side of ! 0010
of the
£ the le w20 ! # S % & tPDIl=+
the
0 0i1|2|2/4|51617 1819 <
fegistrationduthority ion responsible for the sncoding®
Aegistrationiame and version of the mApping, as recognized by that aut o040 @ A B C/DEF GHIIJKL
>. ALl gights = o
e (PIQIRISITIUIVIWIX|YI|Z|L |\
= noen ahle Al s!fle nitls ik 1
& Code P Sieg. OOOOLAE “
Character Map for Right-hand side Font 7
Bght-sde Sample Send to Editer Recent Ranges
) Urscode Names ®) DOO0O-007F
Rounding. Unicode Values
Quected Chan
Hex Dec LUricode Name U Vsl Cas 8
| | N et Scheherarsde

Then it comes up with a small example conversion mapping file, and a couple of windows
for selecting characters. If you already have a mapping file, you can use the File menu to

open it. You can also set this program as the default program to open your mapping files,
which we usually give a .map extension.

c e ® it Yamen . 0000

o Pi® # 5 % & Cl)|*|+]|,
o0 D/112/3 4 5|6|7 8/9:|;|<|m|>|7

® Code Ports Subwats DO0CL07F

Character Map for Right-hand side -- MabaASmap ?
..........

Sert s fitter Fecart Farges
B o e . 00000%

So if | double-click on the MabaAS.map file, it opens up our Maba mapping file, ready for
editing. In addition to the editing pane, there is a section where you can test your mapping
file, and two separate windows to the right with character maps. The editor puts
information about the fonts and window positions as comments at the beginning of the
mapping file, so you don’t have to go through the select of the fonts and positioning of the
windows each time, which gets old real fast!

One of the first things we want to do is to position the character map for the Right-hand-
side on the Arabic code page. You can do that by selecting 0600 in the drop-down list, or by
selecting the Subsets radio button and then selecting Arabic in the drop-down list.

a TECKt Mapping Editor -- MabaAS.map == Character Mag for Left-hand side - MabaAS.mag t
Fie | [de Veew Hep Serd o Edor Pacert Farges.
S T ® Lo Names & oooo007
Unode Vekian
Tated Trary
Cha S8
o [1jaisfais [s[7 [[9[alnc |p (€ [F -
a0, 308, 709, 70
oe
mcsaing” Lo ISRSTRE 2L 3 ERMIA ILAE
-
WR (012345067 89|z |<|m|>|7
® Code Ports Subets 0OO-00W -
5 Taawy pass
S 14 Edbar Fetart Farn
Uracesde Names w
- 0 Corwein an Bam L
o8 e i
Custed Orars 0000007
Bt Sarce [Ro—
[] 1 1 i [[L)] € L ¥ e
e - Tale .
Mes Doc Lrscode Name e vy . . . - ry .
e ERN G wit|w ||z

International

To see one of the ways this mapping editor can help me, let’s remove the line that converts
“t” to “TEH”, and show how we can put it back in.

Character Map for Lefi-hand side -- MabaAS.map
Sendts Edeer Fecert Fargms
Urscede Mames & O00J0TF
Urede Vaha
& Custed Crarn
Chare 52
tjela Ja [s]e s (siaie [c o e [F] -
e @ ABCDIEFGHI1IJKILMNDOJ
0% QRIS |T\U VWX YIZI[|\|]
[able de | h i1 J k 1 m n e
x>pq11=u\-wx\"l ¥ = |
® Code Ports. Subeets DO0C-007F -
char Y, naene: “letin_small lefier 17, vakoe “Us 007"
Character Map for Right-hand side -- MabaAS map *
2 e Sordte Edeer Fecert Rarges
i< » Urcse Namen .
Uncose Ve €8 Cormois ard Busc Lt
wde Sorpie
-~ Gusted Chars DO0G-GTF
Gcreterninie
1 b '3 L] ¥ A o E ¥ =S
wi dlulalaler v Ll -l
- %
1 3 o % .
Code Ports 8 Subwets At -
char "7, name "aeabic_letter teh”, value “Us DEZA™

2017 © SIL International

We put the insertion point where we want to add the mapping rule, then we use the
windows to the right to select what we want to insert in our mapping file. We select
“Quoted Chars” for the Left-hand-side and click the “t”, then tab or space over and type
“<>" space over, then select “Unicode Values” for the Right-hand-side and click on the
“TEH".

42

file Edit View Help Send to Edtor

Compiled successfully! O Unicode Names
- > O Unicode Values
- ez ®) Guoted Chars
"t <> U+064F U+0648
'u' / (#][WozdBzeak]) _ <> U+0623 U+064F Charis SIL
"yt <> U+064F 0 |
1
; consonantcs il |
. <> U+0628 0040 @ A
<> U4067E g 7] |
v+oezal ‘ot <> U+062A 0050 PQ
U+062C — a !
U+0683 = -
U+0686 8
U+062F 1
U+068A r 0070 P|q
U+0631
U+0632 A
40694 (®) Code Points () Sub
U+0657 char: "t", name: “latin_sny
U+0698
U+0633
rent U+0634
U+0148 U+078D Send to Edior
(O Unicode Names
. ®) Unicode Values
Left-side Sample: 00 e
Right-side Sample: T
0 1
Roundirip: 0600 =
[-
0810

That re-inserts our mapping rule, without having to look up codes in the Unicode chart. It
did use a different kind of quotes, but either kind can be used — they have the same
meaning.

et

et

+ consconants

. <>
<>
<>
<>
<>
<>
<>

Hoanpguag o
R T Rt i

<> arabic_vowel_ sign_inverted small_v_above

‘uu' / (#] [WordBreak]) _ <> arabic_letter_alef with_hamza_above arabic_darma arabic,
"uu® <> arabic_darma arabic_letter_waw

'u' / (#][WordBreak)) <> arabic_letter_alef with_hamsa above arabic_damma

<> arabic_darma

arabic lcbt.r_h-h
arabic_letter_peh
arabic_letter_teh
arabic_letter_jeem
arabic_letter_nyeh
arabic_letter_tcheh

I

arabic_letter_dal

Chans SIL
.n 1
00 |@ A
0050 P |Q

0os0 a

» w0 [p|q

d* <> arabic_letter_dal_with_dot_below - == -
<> arabic letter reh ®) Code Points () Subd
b <> arabic_lettezr_zain har: "t* “tati
rde? <> arabic_letter_reh_with_dot_below SORE L TS)
‘tr* <« arabic_letter_reh_with_two_dots_above
‘ndzc* <> arabic_letter_jeh
‘s’ <> arabic_letter_seen
‘eh* <> arabic letter shean Sendto Edtor
< ®) Unicode Names
; (O Unicode Values
Left-side Sample: .
Quoted Chars
Scheherazade
Bight-side Sample:
0 1
Roundrip; 0640 - |9
h || A NCEN

In addition to inserting characters as Unicode values or as quoted strings, you can also
format them as Unicode Names. Some people find that mapping files created like this are
more self-documenting. SIL Converters handles all of these different character formats, and
they can even be used interchangeably in mapping files — maybe using the longer Unicode

Names where you particularly want to make clear what the mapping file is doing.

What does the semicolon mean again? The beginning of a comment.
If you look at something a while later and don’t remember what you were doing, that
means you should have put a comment there! Just type a semicolon followed by some text

that helps you remember what is going on.

44

Compied successfully! ®) Unicode Names
Unicode Values
Quoted Chars

Chans SIL

"

0140

-

0150

0160

Ch|ww| On| = |®
. (=1
< = [

0170

®) Code Points Subsats

+0148 'g" <> eng=-g
:i' i: U+0 v Send to Edtor
< > @) Unicode Names
- i . Unicode Values
Left-side Sample: |alin aa ari edlq e
ed Chars
I T
Right-side Sample \39.; T ;él Scheherazade
< 0 1 2
~ Reundtrp: alin-aa-ari-edig » 0000 .
Unicode Name U Value Chars ~l 0010
[EECCCR v |a
latin_small_letter_| U+006C 1 0020 "
latin_small_letter_i U-+0069 i ’

Before | go on, | wanted to draw your attention to something that many people appreciate
about the TECkit Map Unicode Editor. You can type or paste a sample of text in the Left-
side Sample box, and it will run it through the conversion for you, and even try to run the
conversion backwards from there, giving you the resulting Round-trip text. And if you click
in one of the sample boxes, it gives you a list below of all of the characters with their codes
and Unicode names. The program default is that your mapping file is continually auto-
compiled — see that “Compiled successfully!” message at the top? So as you change your
mapping file, you can see the effects of those changes immediately in the sample boxes.
And if your mapping file can’t compile, it will give you an error message up there. If you
double-click on that error message, it will highlight the line with the error.

You can see in this case that the Round-trip result is not the same as the original — it has
hyphens instead of spaces. But MabaAS was designed as a Roman to Arabic script
converter, so it’s not too surprising that it doesn’t work exactly right if we run it backwards.
This ability to get immediate feedback on how your mapping file works is a Very Good
Thing!

45

== MabaAS map

; First pass
Spoiler alert! Spoiler alert! Spoiler alert!
pass (Unicodes)

class [UpperCase] (U+0041..U+005A U+014A)

(U+006l1..U+007A U+014B)

class[LowerCase]

[UppexCase] > [LowerCase]

; Second pass
H mair‘. charac:er CDH'JBE.EI:ILC}H rass
pass (Unicode)

class[WordBreak] = (U+0002 U+0003 U+0003 U+000A U+000C U+000D \
U+0020..0+002F U+003A..U+003F U+005B..U+005E \
U+007B..U+007E U+00AQ0 U+00AB U+00BB \
U+2000..0+206F)

2017 © SIL International

Let me quickly go through a few more commands and techniques that are helpful to use in
mapping files. One command that is very helpful is the “pass” command. This allows you to
define distinct conversion passes — an earlier conversion pass is carried through to
completion before the next conversion pass is started. That allows your conversion work to
be compartmentalized so that things don’t get quite so messy.

The portion of the mapping file here has two separate passes. The second one (with just a
little bit of it showing) says that it is the main character conversion pass, which converts the
bulk of characters from Roman to Arabic script.

Take a look at the code in the first pass... Can you tell me what it does?

O It converts all Roman script characters to lowercase. Can anyone explain what these
character classes are and how they are defined?

A: 0041..005A is A-Z, 014A is capital Eng, same for lowercase

If we change everything to lowercase, then we can just look for a lowercase “b” to convert
to “BEH” in the next pass, rather than looking for both upper and lowercase. So it makes
the other passes a lot simpler.

0 What about this conversion rule... Does anyone notice anything different? It only goes
one way!

That’s because we can happily convert to lowercase when producing Arabic script, but if we
are going to reverse the conversion, there is no way to know which of the resulting Roman
script characters should be capitalized. We could write some context rules that could
capitalize the first word of a text, or a word following a sentence final punctuation. But
what about proper names in the middle of a sentence? It might be more challenging to
restore those capital letters.

46

£5 SampleMap map

Define _WordBreak U+2028 U+2029 U+0002 U+0003 U+0003 U+000A U+000C U+000D U+0020 \
U+0021 U+0022 U+0023 U+0024 U+0025 U+0027 U+0028 U+0029 U+002C U+002D U+002E \
U+002F U+005B U+005C U+005D U+007B U+007D U+200C U+200E U+200F U+2018 U+2019 U+201A \
U+201B U+201C U+201D U+201E U+201F U+003A U+00AB U+00BB U+002A U+0€1B U+060C U+061F

Pass 1 for Proper names

pass (Unicode)

UniClass [WordBreak] = (_WordBreak)
'Simon' / (#| [WordBreak]) _ (#| [WordBreak]) > 'Osmad'
'Ylyas' / (#| [WordBreak]) _ (#|[WordBreak]) > "l !

P oees

While we are talking about proper names, let me show you a portion of the SampleMap
mapping file that is available on the scripts.sil.org website.

O First | will note that it is possible to define symbols with a macro, like this _WordBreak
symbol that is equivalent to a long list of word breaking characters.

O That symbol can then be used in a very simple WordBreak class definition. Classes need
to be defined in the pass in which they are used, so if the WordBreak class needs to be
used in more than one pass, then defining that symbol with a macro will save us a lot of
duplication.

0 Now look at this pass for proper names.

0 How would you read those conversion rules?

If you find “Simon” in the context where it is preceded and followed by word break
characters, then convert it to that AS string.

Names quite often have some idiosyncrasies in the way they are written, so converting
those special forms in their entirety is usually a good idea.

47

** Round4rin: allah

| Unicode Name U Value Chars

i el o e [N
arabic_fatha U+0B4E
arabic_letter_lam U+0644 ’
arabic_shadda U+0651 O
arabic_fatha U+064E
arabic_letter_heh U+0647 H)

Allah is a good case in point. Remember before that Allah wasn’t coming out the way we
wanted it in Arabic script? The normal Maba mapping table makes it come out like this.

pass (Unicode)
class[WordBreak] = (_WordBreak)

'Allah' / (#| [WordBreak]) _ (#| [WordBreak]) <> "o "

Left-side Sample: Allah

-

Right-side Sample: 8.0l

““ Round+np 1115}

L Value Chars
U+0627 |
U+0644
U+0651
U+0651
U+0670
U+0647 'l
U+0652 .

So you might think that something like this would solve your problem. You can just trust me
that the squiggle between the quotes is what we really want for Allah.

o Unfortunately, when we test it out, we *don’t* get what we want. The problem is that
what we want contains two consecutive LAM characters followed by a shadda, but we have
a pass later on that converts two consecutive consonants to a consonant and a shadda.

49

: Firat pass

; replace Proper Names each with a unique code
: to be replaced with Arabic acript in the laat pasa

pass (Unicode)

class(WordBreak] = (_WordBreak)

'Allah’ / (#| [WordBreak]) _ (#|[WordBreakl) <> 0+0C00
'"Yaakhuub' / (#| [WordBreak]) _ (#| [WordBreak]) <> 0+0C01

; Last pass
H
; restore the Froper Hames in Arabic script

pass (Unicode)

U+0C00 <> '@1'
T40C01 <> 'OpiRy’

2017 © SIL International

So there is a different kind of technique we’ll use instead. We change each of our Proper
Names to some unique code in the very first pass — it doesn’t really matter what codes we
use as long as they are codes that doesn’t appear anywhere in your texts. The 0C00 code
page is for the Telugu script, which | think is pretty safe for most of us! So in our first pass,
we change each Proper Name to a unique code, finish the rest of the conversion, and then
for the last pass, we change each of those unique codes back into the proper Arabic script
form of the Proper Name.

50

Left-side Sample: ' Allah
Fight side Sample: | <)

Roundtrip: |Allah

Unicode Name U Value

With this change, our conversion of Allah works out the way we want it to. One nice side-
effect of handling Proper Names this way is that the Round-trip is performed very easily.
When we reverse the conversion, the Arabic script form just gets changed into a unique
code, the rest of the passes are run backwards to change other text, and then the first pass
changes those unique codes back into Roman script Proper Names.

51

class[vowel] = (

; take care of dipthongs first: ay, ey, oy, uy, aw, ew, iw, ow
; note that dipthongs can never be followed by

; note that word initial
(%| (WordBreak])

(#| [WordBreak])

(#| [WordBreak])

(#| [WordBreak])

(2| [WordBreak])

(#| [WoxrdBreak])

(#| [WordBreak])

(2| [WordBreak])

/
/
/
/
/!
/
/
/
/
/
/
/
/
/
/
/

Another thing we need to handle in our Maba conversion is vowel diphthongs. They are
handled in a similar way to that of vowels and long vowels. You can see that we include the
WordBreak context in the same way to determine if the diphthong appears at the
beginning of a word. But in the case of the diphthongs, we also need to make sure that
there is not a vowel following the diphthong. If there is a vowel following it, then the “w”

oo n

or “y” of the diphthong is actually a consonant, and we don’t want to convert it. So in the
context for our diphthongs we say that the character following can NOT be a vowel. The
caret symbol is a negation. So if a vowel follows the diphthong, that context won’t match

and it won’t be converted.

forms are different

_ "[vowel]
_ "[vowel]
_ "[vowel]
_ *[vowel]
_ “[vowel]
_ “[vowel]
_ "[vowel]
_ “[vowel]
_ “[vowel]
_ *[vowel]
_ "[vowel]
_ "“[vowel]
_ “[vowel]
_ "“[vowel]
_ “[vowel]

_ "[vowel]

<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>

U+0623
U+064E
U+0623
U+065a
U+0623
U+065B
U+0623
U+064F
U+0623
U+064E
U+0623
U+065A
U+0625
U+0650
U+0623
U+065B

another vowel

U+064E
U+064A
U+065A
U+064A
U+065B
U+064A
U+064F
U+064A
U+064E
U+0648
U+065A
U+0648
U+0650
U+0648
U+065B
U+0648

U+064A
U+0652
U+064A
u+0652
U+064A
U+0652
U+064Aa
U+0652
U+0648
U+0652
U+0648
U+0652
U+0648
U+0652
U+0648
U+0652

2017 © SIL International

U+0652

U+0652

U+0652

U+0652

U+0652

U+0652

U+0652

U+0652

52

hyphen turns to space, except when followed by word final -ka or -nu, where it disappears
Hote: first two rules couldn't convert to "nothing”™, so I included the firstc

lecter of the following pair of lectters. Thus the conversion for the "k" and "n"

is actually done here.

-ka' / _ (#|[WordBreak]) <> U+0643 U+064E
'-nu' / _ (#]| [WordBreak]) <> U+0646 U+064F
"t <> v

; convert other punctuation
" <> U+060C
! <> U+061B
” <> U+061F

2017 © SIL International

Here are a couple of other miscellaneous conversions that we do in the Maba mapping file.
The first section takes care of a couple of very specific constructions in the Maba language.
There are two suffixes in Maba that are written in Roman script with a hyphen, “-ka” and “-
na”. The Arabic script version of those suffixes attaches directly to the previous word
without a hyphen. Anywhere else we see a hyphen, it just gets turned into a space.

This is an example of a very specific and precise conversion that we make for this specific
language.

And the last section here just changes some punctuation to their Arabic script forms.

53

y www R1]1 Left-Hand-Side is now Arabic script www

; Fourth pass
; Insert shadda between doubled consonantcs

; Must do consonants individually because there is no way to match
; two characters that must be the same on the LHS with a class

pass (Unicode)

U+0628 U+0628 U+0628 U+0651
U+062A U+062A U+062A U+0651
U+0628 U+062B U+062B U+0651
T+082C T+082C < T+082C T+0651
U+0€2D U+062D U+062D U+0651
U+062E U+062E U+062E U+0651
U+062F U+062F U+062F U+0651
U+0630 U+0630 U+0630 U+0651
U+0631 U+0631 U+0631 U+0651
U+0632 U+0632 U+0632 U+0651
U+0633 U+0633 U+0633 U+0651
U+0634 U+0634 U+0634 U+0651
U+0635 U+0635 U+0635 U+0651
U+0636 U+0636 U+0636 U+0651
U+0637 U+0637 U+0637 U+0651
U+0638 U+0638 U+0638 U+0651

2017 © SIL International

| have a couple more passes that | would like to show you, but | want to draw your
attention first to the comment that appears before this pass. The pass right before this one
was the main character conversion pass. In that pass, everything that was still in Roman
script should have been converted to Arabic script. That means that any conversions from
here on out will just change Arabic script to Arabic script. What was a pass we saw before
that changed Roman script to Roman script? Right, the conversion to lowercase.

So generally the overall design will probably have a pass for marking proper names,
possibly some Roman script conversion passes, then one main pass to do the bulk of the
conversion from Roman to Arabic, then addition passes for making adjustments in the
Arabic script, and a final pass for changing our proper name markers into their final Arabic
script form.

So this pass here is one of the latter ones for adjusting the Arabic script. | mentioned that
one problem running Allah through the normal conversion was that a double LAM was
being changed into a LAM shadda. This is the section of the mapping file that does that. It
simply looks for specific doubled consonants and changes them into that consonant
followed by a shadda. Remember that this pass is run after we have already attempted to
convert everything into Arabic script, so the left-hand-side character matches are in the
Arabic 0600 block.

54

; Fifth pass

: Add sukun between TwWO CONSONANTS
pass (Unicode)
class[cons] = (U+0628 U+062A..U+063A U+0641..U+0646 U+067E \

U+0683 U+0686 U+068A U+0694 U+0697 U+0698 \
U+06A0 U+075D U+0766 U+0767)

2017 © SIL International

And one last thing we do is look for places where there are two consonants next to each
other and put a sukun between them. Have you ever noticed that Arabic readers always
stick a vowel sound between two consonants, even if there isn’t one there. The sukun is
intended to mark a place where there specifically is not supposed to be a vowel. Some

languages may find that marking sukuns is helpful, and this section of the mapping file can
do that.

55

How are we doing?

Time for another process check.

What will generally be the organization of passes in our mapping file?

Tag proper names, RS passes, main conversion pass, AS passes, insert AS proper names
What didn’t you follow, or what questions do you have?

56

Installing a New Converter

From Data Conversion macro

It’s great that you can use the sample boxes in the TECkit Mapping Editor to perform a
quick conversion with your mapping file, but at some point you’re going to want to do
“real” conversions, converting large sections of text in LibreOffice or Word, or converting
translations like we saw in Paratext. To do that, you need to install your mapping file as a
converter in SIL Converters, which is generally done by using the Data Conversion macro

that we saw before.

57

[Untitled 1 - LibreOffice Writer -0

File Edit View |nset Fgrmat Styles Table Tools | Linguistics | Window Help x

-8 -E- = ¥ & Bhonalogy Settings Q" § 55 -M » BasicAddonBuilder

Get Phonology Bxamples
-
Text Body v| (&7 (R ||CharisSILCompac Grammar Settings ab ay, (47 E Ay
i -] g Get Grammar Examples : :
= ' ’ List of Abbreviations . ’ - I - -

= 15=
- v
== T me ».

bereg peg tar jig njirka T

diwiwi ndulug riyali zit)) rekeg
R s Word List and Spelling

sip chiim porporiyog 0§ . Spelling Changes

farjee gurig kochombor script Practice

mandakal mbaar niteg ! pep

hilleg wasig yowyowdag
Converted to Arabic Script

alin aa ari edig tee sur irii osur oroo uson uug siren
aday toray okoy tuy andaw kerew ziw yow

bereg peg tap jig njirka caaka

diwiwi ndulug riyali zibdag drabag trendag ndrekeg
sin) chiim norporiyog ngorbog

farjee gurig kochombor laar

mandakal mbaar niteg nereg

hilleg wasig yowyowdag

< >
Paoe1of 1| 48 words 277 charpcters selected | Default Stvie | Multiple | w| AR | = ——

When | first showed you a conversion in LibreOffice, we selected Data Conversion from the
Linguistics menu.

Data Conversion

Converter name (SIL Converters must be installed.)

Select...|

] Beverse direction Mo converter

Scope of change Target data
_) Whole Document '®) Do not change style or font

Faragraph styie:

v Character Style:
(®) Standard Complex Asian

_) Paragraph style: Font for the style

Character Style: & Standard Complex Asian

_) Change font without applying a style
Backslash markeris):

\tx \mb [] Ask before miaking gach change

Close and Conyert

To the right of the first field here, we click Select button to select the converter to use.

-3 Select Converter

Choose an existing converter from the list below or click Add New to add a new one: v Show ToolTips

Any to Latin

Arabic to Latin

Bambara SIL Chans<>UNICODE
Burkina Faso Winye-2003<>UNICODE
Cameroon<>UNICODE

Chad35

RCI Standard Doulos/Sophia/Manuscrpt<>UNICODE
SIL-BF Font Famiy-2005<>UNICODE
SIL-BF_Times-2006<>UNICODE

SIL-Mali Standard Fort Famiy<>UNICODE

SIL Togo-Benin Tbb font family <>UNICODE

Toi_dannn
H=p- b bl

Conversion Options
Normalize Output
o
e
c

Conyerter Installer

International

Let’s say we just finished creating our MabaAS mapping file. You can see that MabaAS is
not in the list of converters. So we click on the Add New button.

2% Choose a Transduction Engi.. ?

Select an implementation type and click Add:

Adaptht Knowledge Base Converter

CC Table

Code Page Converter

Compound (daisy-chained) Converter

ICU Converter

ICU Translterator

Primary-Fallback Converter

Python Script

Regular Expression Find and Replace (ICU)
Nord Guesser for Adapth

2017 © SIL International

There are a number of different types of converters that can be used. Click on TECkit map
at the bottom and click the Add button.

-5 TECkit map ?

Abot Setup | Test Avea | Advanced |

TECkitfile: | [E]

Save In Repository | OK | Cancel ‘ Apply |

In the window that appears, click on the Setup tab, then on the three dots to browse for
your mapping file.

62

34 Browse for TECkit map
« ProgramData » SIL » MapsTables v O

Organize v New folder

Microsoft Help
MiKTeX

, Mezilla
MNorton
iNortoninsiaiier

. NuGet
Oracle

, Package Cache
PreEmptive Solutions
pygi-aio
regid.1991-06.com.microsoft
Roaming

, shimgen
SIiL

File pame: v| [TECKit (compiled) files ("tec) v/
TECkit (compiled) files (*.tec)
TECkit (compilable) files (*.map)

2017 © SIL International

| would recommend that you put a copy of your mapping file in
C:\ProgramData\SIL\MapsTables, and use that copy in SIL Converters. Then you will still be
able to use the converter even if you move your original file around or rename it. The
default file type is compiled TECkit files, with a .tec extension, so you need to switch to
viewing the .map text files.

63

Browse for TECkit map

« ProgramData » SIL » MapsTables v

Organize v New folder

. Oracle
Package Cache
, PreEmptive Solutions
pygi-aio
; Tegid. 1591 -00.com.microsoft
. Roaming
, shimgen
j SiL
Art Of Reading
, FieldWorks
HearThis
lewS0
MapsTables

Name

.| Bambara SIL Charis.map
__ BF Font Family.map

| BF Times.map

|| Cameroon2Unicode2007.map

_ Chad95.map
__ MabaAS.map
|| MabaAS2RS.map
| Mali Standard.map
.| RCIStandard.map
.| Tbbd.map

| Tchad2000.map

__ Winye.map

Repository v €

File pame: MabaAS.map

v TECkit (compilable) files (*.mag v

Open | Cancel

2017 © SIL International

We select MabaAS.map and open it.

= TECkit map ?

About | Setup Test Area | Advanced
To try out this processor, type something below and click Test.

|Test Data

Input:

|0054 0065 0073 0074 0020 0044 0061 0074 0061

l} [~ Reverse Direction

062A D65A 0633 0652 062A 0020 062F 064E 062A DG4E

Save In Repository J oK | Cancel | |

You can use the Test Area tab if you like to make sure that the mapping file is working. It is
similar to the sample boxes in the editor. It also shows the Unicode input and output codes.

TECkit map

About | Setup | Test Area Advanced

Eriendly Name: [MabaAS

Left Encoding Name: [Linicode-Maba-Roman

Right Encoding Name: [Unicode-Maba-Arabic

[~ Unicode Encoding Conversion [Non-Unicode Encoding Conversion

[V Transliteration [~ Spelling Fixer Project
_ [T ICU Transliteration ™ Python Script
Trmmechon Fypes: [ICU Regular Expression ™ Perl Expression
™ ICU Converter [~ Spare 1 (user-definable)
[T Code Page ™ Spare 2 (user-definabla)

Save In Repository I ITI Cancel ‘

And then on the Advanced tab, you can fill in the information about the mapping file. You
should check transliteration, since this is a Unicode script conversion. Then click the Save in
Repository button, and then click OK.

= Select Converter ?

Choose an existing converter from the list below or click Add New to add a new one: ¥ Show ToolTips

Any to Latin

Arabic to Latin

Bambara SIL Charis<>UNICODE
Burkina Faso Winye-2003<>UNICODE
Camencon<>UNICODE

Chad35

RCI Standard Doulos/Sophia/Manuscript UNICODE
SIL-BF Font Famiy-2005<>UNICODE
SIL-BF_Times-2006<>UNICODE

SiL-Mal Standard Font Famiy<>UNICODE

SIL Togo-Banin Thh font famieoxLINICODE

Tehad2000
Conversion Opbons
r Beverse direction (for Normalize Output
bidirectional converters) * None
I Debug " Eully Decomposed
" Fully Composed
Converter Installer oK Cancel

Now we have that new converter in the repository, so we can select it and click OK, to
return to the Data Conversion macro with our new converter selected. It’s also possible to
add a converter to the repository directly from the editor. But it’s helpful to know how to
do it manually as well, since you may have to install converters for people who aren’t using
the editor.

67

TECkit Mapping Files

Recommended method for performing script
conversions

Fairly easy to use

Somewhat limited in what it can do

So that’s all | wanted to share with you about creating TECkit mapping files and using them
to perform script conversions. This is the main technique that we are encouraging you to
use for your script conversions, as we help you with those this week.

| would like to briefly show you a couple of other techniques, but before we move on, are
there any questions?

| have one question for you. What did you think about the TECkit programming language?
O It’s fairly easy to do simple things with it.

O But it’s also limited in what it can do. For example, inserting the shaddas required writing
a separate rule for every consonant. Not the end of the world, but that shows that it has
some limitations.

68

Python

Full programming language

More complex

Power of regular expressions

Python, however, is a full-blown programming language, and you can pretty much do any
conversion task you want with it.

O But it’s also a lot more complex. You can do some simple tasks fairly easily, but it really
takes a lifetime to master.

0 One nice thing about Python is that it allows the use of regular expressions — a very
powerful way of matching and replacing text, which is exactly the kind of thing we want to
do.

69

= for line in f_in:
replace proper names with codes
line = re.sub('(*|' + wordBreak + ')Allah(' + wordBreak + '|$)', '\\1\uecee\\2', line)
line = re.sub('(*|"' + wordBreak + ')Yaakhuub(' + wordBreak + '|$)’, ‘\\1\ueCei\\2', line)

make everything lowercase, including the eng
line = line.lower()
line = re.sub('\u@l4A', '\u@l4B', line)

replace hyphen with space
except with word final -ka and -na, where it disappears
line = re.sub('-(ka|na)(' + wordBreak + '|$)", '\\1\\2', line)

line = re.sub('-", ' ', line)

replace dipthonge, but make sure they aren't followed by a2 wowel

line = re.sub('(*|.)([aeicu][wy])(2!" + vowels + "}', repl_dipthong, line)
replace the vowels, starting with the longest sequences

line = re.sub(’'(~|* + wordBreak + ‘)aa‘, ‘\\1\u@622', line)

line = re.sub(’aa’, “\W@BSE\ULE27 , line)

line = re.sub('(*|' + wordBreak + ")a’, '\\1\u@623\u@64E', line)

line = re.sub('a’, "\u@64E', line)

line = re.sub('(*]|"' + wordBreak + ')ee', "\\1\u@623\u@65A\u@64A"', line)
line = re.sub('ee’, '\uB65A\u@64A’, line)

line = re.sub('(~|"' + wordBreak + ')e’, "\\1\u@623\u@65A’', line)

line = re.sub('e’, "\u@65A', line)

2017 © SIL International

To give you a sense of what is involved in writing a conversion as a Python script, | rewrote our
MabaAS mapping file in Python. There are different ways to do it, but | chose to read text from an
input file one line at a time, convert that line, and then write the converted line out to an output
file. The conversion process flows in a similar way to our mapping file. You can see here in the
green comments that we deal with proper names, make everything lowercase, etc. One thing we
have to be more intentional about is that Python just runs the commands in the order they appear
in the program, so we have to make sure that we replace the longer strings before the individual
letters. That was one nice thing about our mapping file — it always matched the longest string first,
so we didn’t have to worry too much about what order they were in.

O But this code shows one advantage of using Python. This is the code for converting the
diphthongs. In the mapping file it was 16 lines, but here we are able to use regular expressions to
reduce the matching of the diphthongs down to one line. The sets [aeiou] and [wy] in the middle
allow us to easily match all of the possible diphthongs. The replacement is handled by a function
which handles word initial diphthongs and makes sure the diphthong is valid. One could argue that
this code is easier to understand than a long list of matching rules, where you might not be able to
see the patterns.

o0 And if you find that too obscure, you can just write rules that are very similar to the way the rules
are written in the mapping file. That’s what | did for the vowel rules here. There are 4 rules for each
vowel, whether or not the vowel is at the beginning of a word, and whether it is long or short,
exactly like our mapping file. So with Python you can write simpler code in some places, but where
you need more control, you can take advantage of the depth of the language to do what you need
to do.

70

line = re.sub('k', "\u@643°, line)
line = re.sub('l', '\u@644';, line)
line = re.sub('m', '\u@645°', line)
line = re.sub('n', '\u@646°', line)
line = re.sub('h', '\u@647', line)
line = re.sub('w', "\u@648°', line)
line = re.sub(’'y’, "‘we64A', line)

replace other punctuation
line = re.sub(',', "\we6eC’, line)
line = re.sub{’; ', "\uB8i8', line)

line = re.sub(r'\?', "\uB61F', line)

replace doubled consonants with cons

nant + shadda
(add HEH and YEH to consonant r

ey may also be doubled, but sukuns aren’t marked for them)

ffffffffff 647|\WBB4A) V1", "\\1\u8651°, line)

line = re.sub{’'(’' + consonants + " |w@

£ insert sukun between two consecutive consonants
line = re.sub{'(' + consonants + ‘)(' + consonants + ")', "\\1\u@652\\2', line)

repiace the proper name codes with their Arabic script Torms

line = re.sub('\u@Cee’, '\ud627\u8644\u0644\uB651\UBGTR\UBE47\UBE52', line)

line = re.sub('\u8Cel’, "\uB64A\uBG4E\UBE39\UB652\uB642 \uBE4F \uBG4B\UBE28\uB652", line)
f_out.write(line)

f_out.close()
f_in.close()

2017 © SIL International

This is later on in the Python script.

O You can see the very simple replacements of the consonants.

0 And here is the replacement of doubled consonants with a consonant and a shadda. In
the mapping file it took us 37 lines to cover all of the possible consonants. In Python, the
consonants are defined by a couple of lines at the top, and the conversion of doubled
consonants to consonant plus shadda takes only one line of code.

O So there are some advantages to using Python, but it’s also a pretty steep learning curve.
So if a mapping file can do what you need for script conversion, that’s definitely the way to

go.

Toolbox Interlinear Conversion

suug market

2017 © SIL International

And | just wanted to talk about one more script conversion possibility. In Chadian Arabic,
the Roman script is written for non-mother tongue speakers, who can’t distinguish
between a “seen” and a “sad”. But those distinctions are made in many cases in the Arabic
script. So when you convert an “s” from Roman script, do you use a “seen” or a “sad”? How
can you tell? Is there a context that we can base our decision on? Yes... but the context is
the whole word!

72

Fde fdet Detabase Project Jook Checls Yeew Window Help

SE 0] e[| W] SR [jeo fineq .
‘) &
[Y O4numcabrs.tet o == |@ ProperNounsdb ERICEE- RN Y Arabicdb
et |13 ~ [Hawwa ™ rassal
A e 13 - :
\] /s Muusa rassal naas yurvukhu balad Kan'aan st | gl sk Ly
v s i Nt
\ A 1 Wa Allah hajja le Muusa wa gaal: \ets | Van Dyck \ots Matthew
¥ | A2 Rassil naas le yuruakho leek balad Kan'aan al-ana nantiiba le Bani Israa'ill € ||\oe [pr L 5
W ™ s E
W | A3 Wa khalaas Muusa rassalasbum min kadaadit Faaraan hasab kalaam Alak. Wi |27 [2 \2e %o sud
W | A 4 Wa deol asaamechum. gn |Eve \gn envoyer
v 71 Min gabiilat Ra'wubiin, Chammuu's wileed Zakdaur. W |Gen320 \dn envoyer, dépécher
il M \nt \mell tmof
A /¥ 5 Wa min gabiilat Chim'uun, Chaalaat wileed Huuri e 27/Jun/2012 \pev yirassil
v |m ,
W |~ 6 Wa min gabiilat Vahuues, Kaslib wileed Yafouna. s [l
A it i
W 7 Wa min gablilst Yassaskar, Yigaal wileed Yuusul, I
M i | e acat |) .,
W | A 8Wa min khachum beet Afrasyim, Huuchs® wileed Nuus. | BdraWordformsdb | = | & | D el |2
v |m [fec | myam i
:: .;i-]o Wa min gabiilst Banyasmiin, Falti wileed Rasfo. e 12 ot 22/May/2015
W [A 10 Wa min gabiilat Zaboluun, Gaddiyiil wileed Sundi. | -
v | ot | Acts B ArabicWordForms.ob
W Av 11 Wa min gablilat Yousul, wa da, min khacham beet Manassa, Gaddi wileed Sa o brvar m pesmer
:"! !“-g L e hamoe W & s sus s s __m \g"‘ mﬂ'“ ‘os w
U |13 T e gt D, Ayl wid Cumeeh oo [aya ‘ e sl
v /v 13 Wa min gabiilat Acheer, Satuar wileed Mikaayiil Wk |03/vax/201¢ o
a Al \as B t]
W | 14 Wa min gabiilat Naftasli, Xabbi wileed Walsi.
W Ml
¥ | % 15 Wa min gabiilat Gasd, Gawiil wileed Maski
v
V. e 1A Wa dnnl sessma slnsss shrserslashum Vnnes Lo svrenbbe halad Kan'asn 1
P s
‘b rassal EEE26/245411 WordForm pi

2017 © SIL Internationa

So let’s assume for a minute that we have a magical database called Arabic Word Formes,
and that it has all of the different possible forms of words in both Roman and Arabic
scripts, like this window in the lower right. If we had such a database, Toolbox is pretty
handy and fast at basic interlinearization, so it could quickly look up words and produce an
interlinear for a text. So if, for example, | put my cursor in the text at the beginning of the
line that starts with Muusa, then click the Interlinearize button...

73

Fde [det Detsbase Prgject Jook Checks Yww Window Help
B|6 %] e|a[w] 5| @] 20 [jnofineq z
—— ¥
B o [2P=) B PoperNounsdb (o (& E | Arabicdb
~ [Hawwa e rassal
Yaste |glis \mske g b
" /s Muousa [FIITT naas yuruukin - -7
m /s Muusa rassal nass vuruukbu ‘ats | Vian Dyck ots Matthew
"] s Moses 3SgMasc-to.send person-Pi 3Pl-impf-to walk os |mpr o L
1" T npr W nm v ‘ge |Eve \ge to send
" ", - 4 wn |Eve \gn envoyer
§ gk R] 9 ¥
s | 5] e _'L.-,- ‘_—Ll e Wi Gen 320 \dn envoyer, dépécher
\nt \mell tmaf
it 27/Jun/2012 \pov yirassil
i "
\J balad Kan'azan - R
Ll balad Kan'san
] country Canaan ” 1
e [(nf npr ® BaaWordFormsdb | = | @ | @ | | WAt |0
. e Ve | myah
|t e nt
s [y Ol \an 22/May/2015
as | ach §
‘ot | Acts B Arabic an
o | brvar = -
A L. . » . ge | therens \os ::“
] A 1 Wa Aliab Bajja ie Muusa wa gaai: n |iva \c 3 -
L] v 2 Rassil nass le yurvukho leek balsd Kan'san al-ana nantitha le Bani Tsras'iil ¢ \‘:‘ F-.:h"!" f2016 \ae g
M » 5 far i e
\ v 3 Wa khalaas Muousa rassalashum min kadaadit Faaraan hasab kalaam Allah. W, ke 1 o)
L & 4 Wa dool asaameehum.
s Al Min gabiilat Rauubiin. Chammuu's wileed Zakkuur.
Al ain
L) /v § Wa min gabiilat Chim’vun, Chaalast wileed Huuri. -
o P 5
et 13 1437 WordForm pr

2017 © SIL International

Toolbox looks up all of those word forms in the sentence, and produces an interlinear that
includes the Arabic script. And once the interlinear is complete, we can just extract the \as
lines and we will have the conversion of the text in Arabic script.

I've highlighted the word “rassal” here, and you can see the source lexical entry to the
right, as well as the specific word form that was used at the bottom. If we click the
Interlinearize button a couple more times, we get to verse 2, which starts with the word
“Rassil”. That’s the imperative form of this verb.

Toolbox - ArabicWordForms.db
S| 0|0 el | @] SR [fineq <]
1) &
[Y O4numcabrs.tet o = @ ||@ ProperNounsdb o @ia]|a Arabic.db
v gaal: T s —
{wm gaal 2
L] 3SgMasc-10.5ay e
v :.‘ -7
s Matrhew
|\as :‘_,Ib L
to send
raasil wg-to.send fesbcwodFom d i Cancel | envoyer
rassilab impr-to. send- 3ISgMascObj AssbacwiondF o b B envoyer, dépécher
— " o || e _aneas s - ot | imaf
v L T Baas e yurumkho e S—— B e VS & virmssil
I & 2 rassil mass le vuruakbu || |rassilan inpe-fpl-to.sead Angbichwicnd coma & __Tyhgen | ’
‘\": : 5 :’,“"omﬂ ?e:‘qui ,I;vnrvp ‘:IPl-mp{-no rassilanah mpr-fpl-to send- 3SpMascOb, ArsbicwiondF orma &b o ;.:_J._
7 rassilanak mpr - pl-10 send.- 2SgMascOb, usbuciwinome dbs s -
LD a tt 1 Lo Addtional ek
o A T e) ey rassilanka - fpl-t send. IS FemOb AnbichiontFome & - J s
rassilanhin impe-fol-to send- IPFemObi Aubiculendomme & [oe Gloms i <] i
rassilanhum mmpe-fpl-to send- IPIOL] MbsaFoamid v [Showpath
22/May/2015
I [reex balad Kan'san al- ama
lvm |leek balad Kan'aan al ana \ots | Acts Y Arabic ao
1] 10-25gMascPoss country Canasn the- | s brvar . pecear-
e prep nf npr art- pron ‘ge |therens wos v
y v o .
. |s1d AR T (R ¢ o |dya Vgo | impr-to send
[l |2 A oS S D v |03/Mar/2016 i
ws | L5
[nantiiha le Bani Israa'iil
\m | mantiiha le Bani Israa’iil
[\a | 1Sg-impl-to.gve-35gFemObj to tribe.name lsrnel 5
s rassil 5SB0/245411 WordForm pi

2017 © SIL International

What if this magical word forms database had that form of the word as well — Toolbox
could just do the lookup in the same way to produce the interlinear. So now the question is
how can we produce this magical word forms database, with all of the different possible
word forms in Chadian Arabic? You probably can’t read it at the bottom, but this word
forms database has 245,000 word forms! When we search for “rassil”, we not only get the
imperative “Send!”, but we also get forms with various object pronouns attached, like
“Send him!” and “Send us!”. (I might also mention that you also get some forms that don’t
make sense, like the command “Send you!”, which is grammatical, but probably isn’t ever
used.) But how can we produce that database from our basic lexicon of less than 4,000
entries?

Perl Script rassalt I sent

rassalti you(sg.fem) sent

Arabic.db rassal he sent

rassalna we sent

rassalo they sent

etc.

snvover

envoyer, dépécher
nof rassalaak he sent you(sg)

virassil
rassalah he sent him
rassalaana he sent us

rassalaahum he sent them

22/May/2015
etec.

2017 © SIL International

In this case the magic happens in a Perl script. Perl is a programming language similar to
Python, with a lot of the same capabilities, like regular expressions. | believe the general
opinion in SIL is that Python scripts are easier to read, but when | started this project,
Python wasn’t widely used yet, so | wrote it in Perl.

O This Perl script takes each individual lexical entry, and, with an intimate knowledge of the
grammar of Chadian Arabic, produces all of the possible word forms. “I sent”, “he sent”,
“they sent”... and from each of those forms we add all of the possible object pronouns: “he
sent you”, “he sent us”, “he sent them”, etc. From a single entry in the lexicon, we can
produce several hundred word forms.

And when | say the Perl script has an intimate knowledge of the grammar of Chadian
Arabic, | mean intimate! When you attach affixes or object pronouns, you get all sorts of
morphophonemic fireworks — vowel dropping and insertion, vocalic attraction, reordering,
etc. And since the Perl script is building all of these word forms, it needs to know exactly
what to do and when.

76

Eile fdt [Detsbase Prggect Jook Checks Yiew Window Help
S| 2] 2] el 4] 5 8] 090 fjos e 3
ey T
B o <= fakin] | @ ProperNouns.db SRR Arabicdb
a e Tsraa“ill el | rassal
o3t "::.';*:" \asix g
¥ |p Wa Allah simi® Kalaamhum. [il i
\mn p wa Allah simi’ Kalaamhum [tats | Matthew \ais Matthew
3 p and God 3S5gMasc-tohear speech-3PPoss |\es npr ‘s W
v P conf nm nm ‘ge | lsrael \ge to send
i i - T, \gn | Israel \gn envoyer
s |Pf 3 A iyt B l\pdl |22 \edn envover, dépécher
l\pdv | Israa’iili ‘ol impyf
| | 9= vy \pdv virassil
\as Lyt
= =y . "2
W N 3 Wa Muusa kamaan, bu raajil miskiln wa loa |f o S
Vn A 3 wa Muusa Kamaan bu raajil miskiia wa linchs | Teran®iitie. =
9 ¥ 3 and Moses abo, he aman poor and R 1
\o v 3 cofnpr adv, pronnmm adn con B BtaWordformsdb | @ & & | [VWest | J
5 - I e fiyah
we (V33 S 0E A e LS A hos s g
: e |G v 22/May/2015
et | Acts B ArabicWordForms.di
o imvar ™
Vv mutawaadi’ |zivaada min kula naas al- ard \oe there is .i [:f‘ul
\m *mutawaadi’| siyaada min kula naas al ard von liva il)
g — more from also person-Pl the earth \:‘ et \ge | 3SgMasc-to.send
o mutawaadi® |nf prap adv nm arte nf r B . " 5.
yony i . X o K bl 19)
\as || oee 3G e P .G =J . el
-4 e - -
v
et 12 1337 WardFarm pn

2017 © SIL International

So the Perl script ends up producing this word forms database, which is basically a lookup
table, with the RS and AS versions of each word form. And once you have all of those word
forms, a simple interlinear configuration in Toolbox provides a quick and easy way to
convert a Roman script text to Arabic script. What do you think happens if the text has a
word that is not in the word forms database?

O The interlinear lookup fails and usually puts out 3 asterisks. That usually that means that
this word is missing in the lexicon, so the user can add it in, re-run the Perl script and try
again. It could also mean that we don’t have our grammar rules quite right, so we can try to
tweak them. Or maybe this word is just an exception to the rules — language is messy, you
know! In that case, we can add it to the Extra Word Forms database in the middle here, so
that it can be matched manually.

0 How many of you have done linguistic analysis with something like Carla on an
agglutinative language? Depending on the language, it can be fairly difficult to tease the
morphemes apart. | was struggling with that in Chadian Arabic a number of years ago, and
someone suggested that it might be easier to build words up from their component parts
rather than trying to break word forms down into their component parts. And that gave
birth to this project, where the Perl script produces all of the possible word forms from the
lexical entries and lists of possible affixes, and those complete word forms are used for the
analysis and conversion.

77

Toolbox Interlinear Conversion

Requires intimate knowledge of language

Requires good programming skills

Just to make it clear... this conversion option is not for the faint of heart — it requires an
intimate knowledge of the language and good programming skills. But in some cases, like
Chadian Arabic, it might be the best option available.

78

TECkit Mapping Files

Recommended method for performing script
conversions

Fairly easy to use

Somewhat limited in what it can do

So even though | have shown you a couple of other options, most of you who are
interested in script conversions will be creating TECkit mapping files for that purpose. And
we’re looking forward to helping you create those mapping files this week.

Are there any other questions?

79

