

Understanding Multilingual Software on MS Windows

Page Page Page Page

1111

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

Copyright © 2000 Peter Constable and SIL International

Understanding Multilingual Software on MS Windows

The answer to the ultimate question of fonts, keyboards

and everything

Peter Constable

,

SIL IPub/Non

-

Roman Script Initiative (NRSI)

1.

Introduction

A user in Thailand recently ask

ed some intriguing questions about certain problems involving multilingual

data. The problems had to do with data going being shared between expatriates and local Thai users. The

locals were using regional versions of Microsoft (

MS

) software: Thai Windows

98 and Thai Office 2000. In

contrast, the expatriates were using the corresponding US versions with Keyman keyboards

1

 and fonts that

date back to Thai Windows 3.1.

The questions reflect a scenario that’s not limited to Thailand:

“If I give a local my data,

 they can view it if

they use my font, and they can edit it using a Keyman keyboard. Going the other way, I can see their data if I

view the data in Word 2000 and if I use their font, but I can’t use my fonts. I also can’t view it in some other

apps, and I

 can’t edit it.”

 For this user, the differences between the two situations seemed perplexing.

Explanations were provided as to the reasons for the differences, and how expatriate users could update

their US Windows systems so that they could work with dat

a created by their Thai counterparts. Using the

very latest versions of

MS

 software, the differences could be eliminated.

All this was interesting, but it was the next question that caught my attention:

“So, can I get this to work for

me in Shoebox and Pa

ratext?”

2

 I suddenly realised that the answer, which is “no”, was not fully obvious to

many users and support personnel.

This question suggested to me that there’s a general need here for more education. In many places around

the world, similar scenarios

have been played out, and users continue to experience frustration working

with multilingual or non

-

Roman data. Users are looking for solutions, but are also looking for solutions

that work with the applications they have relied on. There is a need to unde

rstand how applications that

deal with multilingual data work, to understanding what the limits and potential are of different

approaches, and to understand why some things are possible with some applications but not with others.

So, I will describe some

significantly different approaches to working with multilingual data that have been

available as Windows has developed since Windows 3.1. I will also attempt to explain some of the technical

details of the life cycle of a “character” from keyboard to displ

ay, but hopefully without getting too

1

Tavultesoft Keyboard Manager

, also known as “Keyman”, is

 a utility for creating keyboard input methods. For further

information, see

http://www.tavultesoft.com/

.

2

The Linguist’s Shoebox

(or “Shoebox”) is an application for use in linguistic research that has been d

eveloped by SIL

International.

Paratext

is an application for use in Bible translation that has been developed by United Bible Societies.

Both of these applications have been designed to work on Windows 3.1 or on Windows 95. They follow the

Win3.1

paradigm

 for handling multilingual data, described in §

4.1

.

http://www.tavultesoft.com/

Understanding Multilingual Software on MS Windows

Page Page Page Page

2222

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

technical. It’s a complex issue with lots of permutations, though, so be warned: this is a somewhat long

answer to a not

-

so

-

easy question.

2.

Basics about codepages, fonts and keyboards

I’ll start first with a few fundam

entals regarding codepages, fonts and keyboards in

MS

 Windows, and a

little on Windows programming interfaces. I will assume basic familiarity with fundamental notions such

as

characters

,

codepoints

,

keystrokes

and

glyphs

. These notions are discussed in Co

nstable (2000b). Given

the technical nature of the issues discussed here, I encourage you to familiarize yourself with these core

elements of multilingual text processing before proceeding.

2.1

Codepage basics

A codepage defines a set of characters for a langu

age or for a set of languages, and it also defines a mapping

for those characters between an 8

-

bit encoding and Unicode. So, for example, the Windows codepage for

the “Western” (or “Latin 1”) character set, codepage 1252 (hereafter, cp1252), specifies a se

t of Latin

characters used for Western European languages, and maps between the Unicode representation of these

characters and an 8

-

bit representation.

Figure

1

: Codepage 1252: a character set, and a mapping from an 8

-

bit encodin

g to Unicode

For instance, the Western character set includes “æ”

LATIN SMALL LIGATURE

 AE

, and provides the mapping

for this character between 0xE6 in 8

-

bit representation and U+00E6 in Unicode. Similarly, it includes “š”

LATIN SMALL LETTER S

 WITH CARON

, a

nd maps this between 0x9A and U+0161. Several other codepages are

defined within Windows to cover characters sets for other groups of languages. These include “Arabic”,

“Baltic”, “Cyrillic”, “Hebrew”, “Greek” and several others (see

Figure

2

).

It should be noted that, for Far East codepages such as Japanese and Korean, the 8

-

bit encoding that is

used is a

double

-

byte

 encoding, in which certain pairs of bytes are used in combination to encode

characters. For example, in the codepag

e for Traditional Chinese (cp950), the combination <0xB5,

0x44>

is used as the 8

-

bit encoding for the character 湄

.

These codepages otherwise work as any other, however,

defining a character set and providing a mapping to Unicode.

Thus, cp950 also provides

the mapping from

the combination <0xB5,

0x44>

to the Unicode value for this character, U+6E44.

8

-

bit encoding

0x20

SPACE

Unicode

0x21

EXCLAMATION MARK

U+

0020

SPACE

U+0021

EXCLAMATION MARK

0x9A

LATIN SMALL LETTER S

 WITH CARON

U+00E6

LATIN SMALL LIGATURE

 AE

0xE6

LATIN SMALL LIGATURE

 AE

0xFF

U+0161

LATIN SMALL LETTER S

 WITH CARON

Understanding Multilingual Software on MS Windows

Page Page Page Page

3333

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

Figure

2

: Windows has codepages for several character sets

For more information about codepages, see §2 of Constable (2000c).

2.2

Keyboard

 basics

Next, some facts about keyboards. Keyboards on Windows 3.x, Windows 95, Windows 98 and Windows

Me (hereafter, Win3.1/9x/Me) generate only 8

-

bit values. This is true even when using an app like Word

2000 that stores text in terms of Unicode. In cont

rast, keyboards on Windows NT 4 and Windows 2000

(hereafter, WinNT/2K) generate only 16

-

bit Unicode character codes.

Figure

3

: Windows keyboards: 8

-

bit on Win 3.1/9x/Me, Unicode on Win NT/2K

A “keyboard” configuration in Windows

combines a particular language and a particular layout; each

language has a

language identifier

 (a “

LANGID

”

) and a default layout associated with it. Each

LANGID

 has a

character set (and, therefore, a codepage) associated with it.

3

 Thus, software that need

s to can know how to

convert 8

-

bit values in this language into Unicode, or Unicode values into 8

-

bit values. The way this works

on Win3.1/9x/Me and on WinNT/2K is illustrated for English in

Figure

4

 and for Greek in

Figure

5

.

3

For newer languages supported on Win2K, such as Hindi, the character set is the entire Unicode character set; there is no

8

-

bit codepage for these languages.

Win 3.1/9x/Me:

G

 0x47

Win NT4/2K:

G

 U+0047

(space)

0x20

U+0020

…

a

0x61

U+0061

b

0x62

U+0062

…

À

0xC0

U+00C0

…

á

0xE1

U+00E1

…

ş

0xFE

U+015F

ÿ

0xFF

U+00FF

Codepage 1254

(Turkish)

(space)

0x20

U+0020

…

a

0x61

U+0061

b

0x62

U

+0062

…

À

0xC0

U+00C0

…

á

0xE1

U+00E1

…

ş

0xFE

U+015F

ÿ

0xFF

U+00FF

Codepage 1254

(Turkish)

(

space)

0x20

U+0020

…

a

0x61

U+0061

b

0x62

U+0062

…

ְ

0xC0

U+05B0

…

ב

0xE1

U+05D1

…

(RLM)

0xFE

U+200F

(res’d)

0xFF

Codepage 1255

(Hebrew)

…

(space)

0x20

U+0020

…

a

0x61

U+0061

b

0x62

U+0062

…

ΐ

0xC0

U+0390

…

α

0xE1

U+03B1

…

ώ

0xFE

U+03CE

(res’d)

0xFF

Co

depage 1253

(Greek)

(space)

0x20

U+0020

…

a

0x61

U+0061

b

0x62

U+0062

…

А

0xC0

U+0410

…

б

0xE1

U+0431

…

ю

0xFE

U+044E

я

0xFF

U+044F

Codepage 1251

(Cyrillic)

(space)

0x20

U+0020

…

a

0x61

U+0061

b

0x62

U+0062

…

Ŕ

0xC0

U+0154

…

á

0xE1

U+00E1

…

ţ

0xFE

U+0163

˙

0xFF

U+02D9

Codepage 1250

(Central European)

(space)

0x20

U+0020

…

a

0x61

U+0061

b

0x62

U+0062

…

ہ

0xC0

U+06C1

…

ل

0xE1

U+0644

…

(RLM)

0xFE

U+200F

ے

0xFF

U+06D2

Codepage 1256

(Arabic)

(space)

0x20

U+0020

…

a

0x

61

U+0061

b

0x62

U+0062

…

À

0xC0

U+00C0

…

á

0xE1

U+00E1

…

þ

0xFE

U+00FE

ÿ

0xFF

U+00FF

Codepage 1252

(Latin 1)

Understanding Multilingual Software on MS Windows

Page Page Page Page

4444

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

Figure

4

: US English keyboard on Win98 and Win2K

Figure

5

: Greek keyboards on Win98 and Win2K

2.3

TrueType font basics

There are some important points about TrueType fonts that we need

to be aware of. First of all, TrueType

fonts are not limited to a maximum of 256 glyphs. In fact, TrueType fonts can have over 65,000 glyphs.

Most fonts have only a small number

—

a few hundred, perhaps. Many users already have at least one font

with tens of

 thousands of glyphs installed on their system, however. For instance, the Arial Unicode MS

font has 51,180 glyphs.

Since fonts can have a large number of glyphs, it isn’t difficult to create a font that supports different

scripts; for example, to have a f

ont that supports Roman, Arabic and Hebrew. This leads to a second

important point about TrueType fonts: since Win95, there have been ways to include information in a

TrueType font to indicate what codepages the font supports. Thus, a font that has glyphs

for Roman (for

Western European languages), Hebrew and Arabic could contain information to indicate that it will work

with cp1252 (“Western”), cp1255 (“Hebrew”) and cp1256 (“Arabic”).

Win98: Greek (codepage = 1253)

Γ

 0xC3

U+0393

translation via

codepage (as

needed)

codepage 1253

Win2K: Greek (codepage = 1253)

Γ

 U+0393

0xC3

translation via

codepage (as

needed)

codepage 1253

Win98: US English (codepage = 1252)

G

 0x47

U+0047

translation via

codepage (as

needed)

codepage 1252

Win2K: US E

nglish (codepage = 1252)

G

 U+0047

0x47

translation via

codepage (as

needed)

codepage 1252

Understanding Multilingual Software on MS Windows

Page Page Page Page

5555

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

The third important point is that TrueType fonts on the Windows platform

s are usually encoded in terms

of Unicode character values.

4

 That is, Unicode values are always used to access glyphs inside the font. This

has been true for all varieties of Windows since TrueType fonts were introduced with Win3.1.

The way this happens i

s illustrated in

Figure

6

. A font contains a set of tables. One of these (the ‘glyf’ table)

contains all of the glyph outlines. There is a separate table (the ‘cmap’ table) that is used to identify the

glyph that is associated wit

h each character. On

MS

 Windows, this table references characters in terms of

their Unicode values. When an application asks Windows to display some text, Windows obtains the

Unicode values for the characters in the string, and uses those Unicode values to

 find the appropriate glyph

for each character.

Figure

6

: TrueType fonts on Windows: glyphs accessed via Unicode values

It is essential to understand that only Unicode values are used inside the font, even in the case of custom

fo

nts that use non

-

standard encodings. For example, suppose you created a custom font and thought that

the glyph for (say) stroke

-

L “Ł

” was encoded in the font as d131 (0x83). In fact, inside the font this glyph is

accessed using some Unicode value. Even tho

ugh an application may store only 8

-

bit characters, by the

time the codepoint gets to the font, something has had to change it to Unicode. Typically, custom fonts

were designed to run on US versions of Windows, and what was actually happening was that thes

e fonts

were using character values from the Western character set but applying glyphs for other custom

characters. Here’s what happens with a normal TrueType font:

4

This is not

 a requirement of TrueType fonts on Windows, but it is true of the vast majority. 8

-

bit

-

encoded TrueType fonts

are the rare exception on Windows.

Unicode (16 bit)

U+0000

•

•

•

U+0414

•

•

•

U+FFFF

A
B
a
b
.
.
Д
Ж
.
.

glyph

 lookup

TrueType font

rendered sting

‘cmap’

table

‘gly

f

’

table

Understanding Multilingual Software on MS Windows

Page Page Page Page

6666

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

Figure

7

: Rending a Western character using a normal font

In cont

rast, here’s what happens with a custom font that assigns a non

-

standard character set to codepage

1252:

Figure

8

: Rending a non

-

standard character using a custom font and codepage 1252

The custom font simply replaces the appropri

ate glyph for U+0192 with a different glyph. Custom fonts are

hacking both Unicode, and the codepage for the Western character set (cp1252). The key point to

remember is that, in every case, the font is using Unicode values for characters.

At this point, y

ou may be wondering about some things; for instance,

If a TrueType font only knows

Unicode, and my Win98 keyboard outputs only 8

-

bit characters, where does the conversion from 8

-

bit to

Unicode take place? Do custom

-

encoded fonts have any effect on how that

 happens?

I’ll explain these things

beginning in §

3

. First, though, we need to talk briefly about Windows programming interfaces and root

beer (or, at least, A&W).

2.4

“A&W” variations of Win32 interfaces

One way to think of Window

s is as a collection of programming subroutines and functions that an

application developer can call upon to perform various low level tasks, such as opening a file or displaying

text on the screen. These subroutines and functions are known as

application

programming interfaces

(

API

s).

There are some important differences between Win9x/Me and WinNT/2K with regard to Unicode

support. These differences appear in the interfaces that an application developer would use.

U+0192

glyph

 lookup

normal font

‘cmap’

table

ƒ

‘gly

f

’

table

U+0192

0x83

translate via

codepage 1252

U+0192

glyph

 lookup

custom font

‘cmap’

table

Ł

‘gly

f

’

table

U+0192

0x83

translate via

codepage 1252

Understanding Multilingual Software on MS Windows

Page Page Page Page

7777

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

The Windows

API

functions require various

parameters, many of them being integer values. Integer

parameters are used for a number of important things, like memory locations or screen co

-

ordinates. Up

to Win3.x, most of these integer parameters were 16

-

bits wide. Therefore, the versions of the Win

dows

API

s used in these early versions of Windows became known as

Win16

.

For Windows NT and Win95, the Windows

API

s were totally revamped. As part of this, the 16

-

bit integer

parameters used in Win16 were changed to 32

-

bit. Accordingly, this version of the

 Windows

API

s became

known as

Win32

.

As the Win32 system was being developed, Microsoft had decided that Unicode was the way of the future

for text. At the same time, they needed to be able to support legacy systems and data that used 8

-

bit text.

To deal w

ith this, they created Win32 with alternate 8

-

bit and Unicode text

-

handling capabilities. In

particular, any application interface into Win32 that related to string handling was provided in two

varieties: an “A” (“

ANSI

”, i.e. 8

-

bit) version, and a “W” (“wi

de”, i.e. 16

-

bit, Unicode) version.

5

There was a significant difference between the way Win32 was implemented on Win95 and on NT,

however: on Win95, only a small number of the “wide”

-

version interfaces are supported; for most

interfaces that relate to stri

ng handling, only the “

ANSI

” versions are available. This is true of Win98 and

Me as well.

We will look later at some particular interfaces and the impact of the two variations of those interfaces on

how multilingual software works. For now, I will just m

ention one group of interfaces: the interfaces used

for drawing text on a screen or printer (TextOut

 and ExtTextOut

) are among the few that are available in

both “wide” and “

ANSI

” versions on Win9x/Me. This makes it possible for an application on Win9x/Me

to

store text that is encoded in Unicode and display it without requiring any codepage translation before the

rendering process. For instance, this allows Word 97 to display Yi or Ethiopic characters, for which there is

no codepage, even when running on Wi

n9x/Me.

3.

The life

-

cycle of a “character”: from keystroke to display

In this section, we want to get a general overview of how characters are processed in Windows, starting

with a keystroke, and ending with a rendered glyph.

People often equate characters, c

odepoints, keystrokes and glyphs. These are all different, but there are

relationships between them, and certain processes by which we get from a keystroke to something

appearing on the screen. As mentioned in §

1

, I’m assuming

familiarity with some basic notions: that

codepoints are the encoded representation of characters, that keystrokes are used to generate them, that

glyphs are used to present them, and that the relationships between keystrokes and codepoints and

between cod

epoints and glyphs are not necessarily one

-

to

-

one. (This is all discussed in detail in Constable

2000b.) For simplicity, I’ll use language that assumes one

-

to

-

one relationships between keystrokes,

codepoints and glyphs, even though we know that’s not alway

s true.

As we consider how characters are processed in Windows, there are some differences between

Win3.1/9x/Me and WinNT/2K. I’ll consider Win3.1/9x/Me first, then go on to explain the differences that

pertain to WinNT/2K.

5

The term

ANSI

 has been used in a variety of ways in the context of Windows. In some cases, it has been used

 as an

alternate name for cp1252. In other cases, it has been used to refer to all 8

-

bit encodings associated with the Windows

codepages. The term actually is an acronym for “American National Standards Institute”. The reason why this name was

originally i

ntroduced into the Windows context was that cp1252 was adapted from a draft

ANSI

 encoding standard. That

standard (now an international standard:

ISO

8859

-

1) turned out to be different from cp1252, however, and so the term is

really not appropriate for use

 in relation to Windows. The disparate uses also creates confusion. Because

ANSI

 in the sense

of

any 8

-

bit text

was the basis for the “A” in the “A” vs. “W” distinction in Win32, though, we need to maintain that use of

the term here.

Understanding Multilingual Software on MS Windows

Page Page Page Page

8888

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

3.1

Character processing on Win3.1

/9x/Me

As mentioned in §

2.2

, keyboards on Win3.1/9x/Me generate only 8

-

bit codes. It was mentioned in §

2.3

,

however, that a Unicode codepoint is needed to access the corresponding glyph in the font.

 Somehow, at

some point, an 8

-

bit code needs to get converted into a 16

-

bit code, as illustrated in

Figure

9

.

Figure

9

: Characters on Win3.1/9x/Me: begin as 8

-

bit, end as 16

-

bit

In principle the conversi

on from an 8

-

bit codepoint to a 16

-

bit Unicode value can happen at one of three

points. First, the conversion could be done by the operating system before the character reaches the app:

Figure

10

: Win3.1/9x/Me: conversion to 16

-

bi

t between keyboard and app

In practice, this has never been done in Win3.1/9x/Me for a very simple reason: these versions of Windows

have never supported a mechanism to pass a character from a keyboard to an application when that

character is encoded in Un

icode. Thus, the statement about 8

-

bit keyboard input on these platforms that

was made in §

2.2

 is not as strictly worded as it could be: not only is it true that the keyboard handlers

provided by Win3.1/9x/Me output only 8

-

bit

codepoints, but also Win3.1/9x/Me have provided means for

apps to receive only 8

-

bit codepoints from a keyboard.

6

 Further details of this will be provided in §

3.2

.

Another point in the life of a character at which the conversio

n from 8

-

bit to 16

-

bit could also happen is

after the character is output by the app in the rendering process:

Figure

11

: Win3.1/9x/Me: conversion to 16

-

bit handled by OS after characters have been output by app for rendering

6

An application coul

d avoid the issue by handling all aspects of keyboard input itself, starting from the keyboard hardware

device driver. From an application developer’s perspective, this would be a very costly approach, and not worth it.

Character

rendered

Font

“

G

”

U+0047:

translation

via codepage

G

 0x47

Character input

Character

maintained by app

1

6

-

bit

8

-

bit

0x47

8

-

bit

G

 0x47

Character input

Character

maintained by app

16

-

bit

8

-

bit

Cha

racter

rendered

Font

“

G

”

U+0047:

translation

via codepage

G

 0x47

Character input

Character

maintained by app

16

-

bit

8

-

bit

U+0047

U+0047

16

-

bit

Character

rendered

Font

“

G

”

U+0047:

Understanding Multilingual Software on MS Windows

Page Page Page Page

9999

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

In t

his situation, the app receives input characters encoded as 8

-

bit codepoints, and does all it’s processing

and storage in terms of that 8

-

bit encoding. It also uses that encoding when it asks Windows to display the

characters.

7

 At that point, Windows autom

atically converts the 8

-

bit codepoints to Unicode in order to

access the glyphs in the font. This is, in fact, the way most software has worked in the past. We will

examine how this is done in more detail in §

4

.

The third point

 in the life of a character at which the conversion from 8

-

bit to 16

-

bit could also happen lies

between the previous two: while the character is being maintained by the app:

Figure

12

: Win3.1/9x/Me: conversion to 16

-

bit handled wh

ile data is maintained by the app

In this situation, the application receives input characters encoded as 8

-

bit codepoints. Now, the app could

continue to do most of its processing and also store the document using the 8

-

bit encoding, and then

convert the

characters into Unicode just prior to rendering.

8

 There would not be any strong reason for

doing this, however: the app doesn’t gain any benefit from the Unicode representation since it only sees the

Unicode values just immediately before outputting the c

haracter(s) to a display. Furthermore, the same

effect could have been accomplished if the app had output the 8

-

bit encoding of the data and allowed the

operating system to do the conversion, as described in the previous scenario.

9

On the other hand, the a

pp could convert characters as soon as it receives them from the keyboard, and

then do all of its processing and storage using Unicode. This is, in fact, what Unicode

-

based applications

such as Word 2000 do when running on Win9x/Me (this will be discussed

further below).

So, of the various points at which conversion from 8

-

bit to Unicode could potentially occur, two are

actually used: for many applications, conversion to Unicode is handled by the operating system when the

app asks Windows to display the tex

t. Some apps handle converting characters to Unicode themselves,

doing this as soon as a character has been received from the keyboard. These two situations correspond to

two important, basic categories of apps: those that store 8

-

bit text, and those that

store Unicode text. These

different categories of applications will be discussed further in §

3.3

.

3.2

Character processing on WinNT/2K

As mentioned in §

2.2

, keyboards on WinNT/2K generate only 16

-

bit co

des. Since this is also what is

required to access glyphs in a TrueType font, we might think that everything is simple: characters on

WinNT/2K are only ever represented using 16

-

bit codepoints. Not surprisingly, things are never that easy.

Bear in mind it

has to be possible for applications that run on Win9x, and that work with 8

-

bit text, to be

able to run on WinNT/2K as well. Before I can explain how character processing occurs on WinNT/2K, it

will be necessary to explain some fairly technical background

issues.

7

Recall from §

2.4

 that the Windows

API

 functions for drawing text can have “

ANSI

” and “wide” variants. An application

gets Windows to display 8

-

bit

-

encoded text by using the “

ANSI

” variant of a text

-

drawing function.

8

An application gets Windows to display

Unicode

-

encoded text by using the “wide” variant of a text

-

drawing function.

9

The

Script Definition File

 rendering system is able to work this way, however. See note

35

.

G

 0x47

Character input

Character

maintained by app

16

-

bit

8

-

bit

U+0047

16

-

bit

8

-

bit

0x47

translation

via codepage

Character

rendered

Font

“

G

”

U+0047:

Understanding Multilingual Software on MS Windows

Page Page Page Page

10101010

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

Recall from §

2.4

 that some Windows

API

s come in “

ANSI

” and “wide” versions. One of these is a function

that is used as an application is loading to make Windows aware of its presence. This function is called
RegisterClassEx

.

10

 For this function, the choice between the “A” and “W” variants has significant

implications for almost everything else that happens while the app is running. This is particularly true for

keyboard input.

The standard mechanism in Windows by which ke

yboards send characters to an application is a special

system message known as WM_CHAR

. In general, this message is capable of sending character codes that are

either 8

-

bit (

ANSI

) or 16

-

bit (Unicode). The choice between whether Windows passes 8

-

 or 16

-

bit

codes in

the WM_CHAR

 message is determined by which version of the RegisterClassEx

 function the app used

during initialisation.

On WinNT/2K, both versions of the RegisterClassEx

 function are available. That means that an app

can initialise itself either a

s an

ANSI

app or as a wide app, and Windows will pass WM_CHAR

 messages that

match. Keyboards will always generate a 16

-

bit codepoint, but if the receiving application used the

ANSI

version of RegisterClassEx

, then Windows will automatically convert the 16

-

bit value into an 8

-

bit

codepoint using the appropriate codepage for the given keyboard.

11

 The wide version of
RegisterClassEx

 is also available, though, and an app that uses the wide version will receive WM_CHAR

messages that contain 16

-

bit Unicode charac

ters. That has made it possible to create keyboards on Win2K

for languages like Hindi and Tamil that use characters for which there is no codepage support.

On Win9x/Me, however, the wide version of the RegisterClassEx

 function is not supported. This means

that, on those platforms, the WM_CHAR

 message can pass characters only as 8

-

bit codepoints.

12

 Since

application developers usually would like their application to run on both Win9x/Me and on WinNT/2K,

they need to accommodate the limitations of Win9x/Me. As

 a result, most current applications use the

“

ANSI

” version of RegisterClassEx

, and therefore can only receive characters that are input from the

keyboard in terms of 8

-

bit codepoints, even when the application is running on WinNT/2K. This will be

discusse

d further in §

4

.

Given this background, we can now explore how characters are handled on WinNT/2K. This can happen in

several different ways. The simple case applies to applications that register themselves as “wide” by using

t

he “wide” version of RegisterClassEx

. In this situation, everything is done in terms of 16

-

bit values:

Figure

13

: WinNT/2K: 16

-

bit everywhere for “wide” apps

If, however, an application registers itself by using the “

ANSI

” version

 of RegisterClassEx

, then the 16

-

bit codes generated by a keyboard get converted into 8

-

bit, and so we have mixed 8

-

 and 16

-

bit processing

as with Win3.1/9x/Me. In fact, we have exactly the same possibilities that we saw in §

3.1

, but with the

10

Win3.x used an earlier, Win16 function, RegisterClass

. Win16 API functions did not have “

ANSI

” and “wide”

versions. Effectively, all Win16 interfaces were “

ANSI

” versions.

11

Recall from §

2.2

 that keyboards on WinNT/2K, as on other versions of Windows, have a

LANGID

 and also co

depage

associated with them.

12

This is the reason why 16

-

bit character input has not been possible on Win3.1/9x/Me, as described in the previous

section. It is also makes codepages essential on Win9x/Me.

G

 U+0047

Character input

16

-

bit

16

-

bit

Character

rendered

Font

“

G

”

U+0047:

Character

maintained by app

U+0047

“wide” app

Understanding Multilingual Software on MS Windows

Page Page Page Page

11111111

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

additional complication that the codepoints generated by a keyboard first get converted from 16

-

bit to 8

-

bit. That we should encounter these same ways of processing characters shouldn’t be surprising when

we’re considering applications that

 were designed to be compatible with Win9x/Me.

13

So, for

ANSI

-

registered applications running on WinNT/2K, one option is that the keyboard generates 16

-

bit codepoints which automatically get converted to 8

-

bit by Windows before being passed to the

applicati

on, and then the 8

-

bit codepoints get automatically converted back to 16

-

bit by Windows after the

application has output the text for rendering:

Figure

14

: WinNT/2K: automatic conversion by the OS to 8

-

bit and back to 16

-

bit

The o

ther option for

ANSI

-

registered applications running on WinNT/2K is for the application to receive an

8

-

bit codepoint and immediately convert it to 16

-

bit, and then to store and process text using 16

-

bit codes:

Figure

15

: WinNT/2K

: automatic conversion by OS to 8

-

bit, conversion to 16

-

bit handled by app

So, we have seen that characters can live one of two types of lives on Win3.1/9x/Me, and one of three types

of lives on WinNT/2K.

3.3

8

-

bit versus Unicode, and “

ANSI

” versus “wide”

We s

aw at the end of §

3.1

 that there in an important 2

-

way categorization of applications: those that store

8

-

bit text, and those that store text as Unicode. We also saw in the previous section that applications must

register thems

elves using either “

ANSI

” or wide version of RegisterClassEx

,

14

 and that this choice has an

impact on whether 8

-

bit or 16

-

bit characters are received from the keyboard. It would be natural to expect

that the 8

-

bit versus Unicode distinction correlates with

the “

ANSI

”

 versus “wide” distinction. There are

clear similarities, but we have seen that the two distinctions are independent: it is possible for an

ANSI

-

13

The first option discussed in the previous secti

on for Win3.1/9x/Me, involving conversion from 8

-

bit to 16

-

bit between

the keyboard and the application, never occurs, either on Win3.1/9x/Me or on WinNT/2K. We saw that it doesn’t occur

for Win3.1/9x/Me since those versions of Windows do not provide any m

echanism for an application to receive an input

character as a 16

-

bit codepoint (and we saw in this section that this was due to the fact that the “wide” version of
RegisterClassEx

 is not available on Win3.1/9x/Me). It doesn’t occur on WinNT/2K for the sim

ple reason that, if an

app was capable of receiving input characters as 16

-

bit codepoints, then they would not have been converted into 8

-

bit in

the first place: they would come directly from the keyboard as 16

-

bit codepoints.

14

Or, on Win3.x, using the “

ANSI

”

-

only function RegisterClass

.

Character

rendered

Font

“

G

”

U+0047:

G

 U+0047

Character input

Character

maintained by app

0x47

translation

via codepage

8

-

bit

16

-

bit

translation

via codepage

16

-

bit

8

-

bit

“

ANSI

” app

Character

maintained by app

16

-

bit

U+0047

16

-

bit

8

-

bit

0x47

translation

via codepage

Character

rendered

Font

“

G

”

U+0047:

G

 U+0047

Character input

translation

via codepage

8

-

bit

16

-

bit

“

ANSI

” app

Understanding Multilingual Software on MS Windows

Page Page Page Page

12121212

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

registered application on Win9x/Me to store text as Unicode (see

Figure

12

)

. It would also be possible for a

“wide” application to store its text as 8

-

bit, converting everything it receives into 8

-

bit, but there is not

much reason to do so, and thus such an application is unlikely.

The following table summarises which combinatio

ns for these two distinctions can occur on various

versions of Windows.

15

 It also indicates which of the preceding figures showing the various processing

models correspond in each case.

app stores 8

-

bit text

app stores Unicode

app registered as

“

ANSI

”

Win

3.1/9x/Me (

Figure

11

),

WinNT/2K (

Figure

14

)

Win9x/Me (

Figure

12

),

WinNT/2K (

Figure

15

)

app registered as

“wide”

WinNT/2K (possible, but

not used)

WinNT

/2K (

Figure

13

)

Table

1

: Support for 8

-

bit vs. Unicode, and ”

ANSI

” vs. “wide” on various versions of Windows

4.

Windows multilingual software paradigms

In this section, we will look at the various paradigms t

hat have been available to applications for dealing

with multilingual data since Windows 3.1. Many of the important issues have been covered in §

3

. There

are still some additional details that need to be mentioned, however.

In

 §

3

, we saw two different processing models used on Win3.1/9x/Me, and three used on WinNT/2K.

Taken together, we saw in §

3.3

 that applications can work in one of three ways, when considered in

relat

ion to two independent parameters: storing text as 8

-

bit or as Unicode, and registering as either “

ANSI

”

or “wide”. Because of some additional details that have not yet been mentioned, there are actually a total of

five paradigms for working with multiling

ual text that Windows applications can follow. We will examine

each of these in this section.

4.1

The

Win3.1

paradigm

Windows 3.1 was designed using an approach we might call a

localization

 approach, as opposed to a

multilingual

 approach. What this meant was t

hat an app was first designed for English and other Western

European languages (the Western character set, i.e. cp1252). It would later be adapted for a different

regional market; that is, adapted to support English plus some other language/character set,

such as the

Hebrew character set, which uses cp1255.

The key point here is that Win3.1 could handle only a single Windows codepage. Windows itself came in

localised versions, each supporting one particular codepage to match the language or languages of th

e

target market for that version. On a given system, text was assumed always to be defined in terms of that

one codepage.

In theory, an app could have stored text in terms of Unicode if it wanted to, but it would have been difficult

to do it, and there was

 no real benefit. Unless an app implemented its own proprietary keyboards and

rendering system, which would have gone completely contrary to the whole Windows ethos, it could

handle input and output only for the limited range of characters in a single Wind

ows codepage. Note also

that the app would still have to be aware of the system codepage so that it can interact with the operating

system, and in order to handle behaviours that might be hard

-

wired into Windows. For example, in a Far

East version, certain

 “upper

-

ASCII

” bytes would be interpreted by Windows as lead bytes in a two

-

byte

15

Note that Win3.1 is not included under

ANSI

-

registered apps that store Unicode. This is discussed further in §

4.1

.

Understanding Multilingual Software on MS Windows

Page Page Page Page

13131313

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

sequence; or in the Thai version, a codepoint might get remapped into a sequence of different codepoints.

Applications designed for a different localised version of Windows mi

ght not behave appropriately. In

summary, Win3.1 and Unicode simply were not made for each other, and apps that support Unicode have

never been made to work on Win3.1.

So, Win3.1

-

style applications store text in terms of 8

-

bits, and interact with Windows u

sing only one

codepage.

16

 The codepage used is determined by the particular installation of Windows. Because only one

codepage is used, the number of characters supported is limited

—

fewer than 224 characters on non

-

Far

East systems.

17

 In terms of how charact

ers are processed, the model shown in

Figure

11

 above is used.

Overall, Win3.x was not really designed to be particularly multilingual.

There is one other detail that needs to be considered in terms of the

Win3.1

 paradigm: Far Eas

t versions of

Windows 3.x/9x/Me use

multi

-

byte

 encodings, in which a character may be represented by a single byte, or

by a pair of bytes. (Some byte values can even be used either as a single

-

byte codepoint, or as the second

byte in a double

-

byte codepoin

t.) For a

Win3.1

-

style application to work on a Far East version of Windows

and to support a multi

-

byte codepage, it must be specially designed to do so. In general,

Win3.1

applications have been designed specifically for particular localised versions of W

indows. For example,

Shoebox and Paratext were designed with only US versions of Windows in mind.

4.2

The

Win95

 paradigm: multilingual, 8

-

bit apps

By the time Windows 95 came out, Microsoft had realised that they needed to allow for greater flexibility in

term

s of multilingual support. The key change in Win9x that made this possible was the ability for an

application to make use of multiple codepages and keyboards.

18

When you install Win9x, many different codepages are installed on the system. Note, however, tha

t one of

these is defined as the default. That default codepage is used for the Windows user interface. It is also the

one that is used if no specific codepage is specified when a mapping between 8

-

bit and Unicode is required.

To get multiple keyboards ins

talled on a Win9x system, some special but easy steps are required:

1.

Go into the Windows setup (use the Add/Remove Programs control panel) and install

“multilingual support”. (This option can also be enabled during installation.)

2.

Once multilingual support

is enabled, if you go into the keyboards control panel, you will see a tab

labelled “Language”; this is where you can add keyboards for additional languages.

3.

Once you add more than one keyboard, you will see an icon in the system tray, probably showing a

two

-

letter language identifier (e.g. “En” for English). Clicking on this icon will bring up a menu

from which you can switch to a different keyboard.

So, we can have multiple keyboards, and these may use multiple codepages. Remember, though, that

somewhere

 along the way, the 8

-

bit codepoint needs to be converted to Unicode before a glyph can be

retrieved. In

Figure

11

, we saw that Windows automatically does a codepage conversion in the process of

rendering text. That model made no

mention of selecting alternate codepages, however. To understand

what an app needs to do in order for alternate codepages to be used, I need to explain how applications

handle font selection.

16

Win9x/Me and WinNT/2K provide multiple codepages. On any given installa

tion, however, there is one that is designated

as a default, or “system”, codepage. This is the codepage that would be used for a Win3.1

-

style application when running

on one of these versions of Windows.)

17

Many have used custom fonts in order to overcom

e this character

-

set limitation. Such implementations are considered

further in §

6

.

18

Note: this is not talking about Keyman keyboards, but rather keyboards that are distributed with the operating system.

The impact of Keyman

will be considered in §

6

.

Understanding Multilingual Software on MS Windows

Page Page Page Page

14141414

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

For an application to present a list of fonts to the user, it mu

st first ask Windows for that list of fonts. It can

do this in different ways. It can retrieve a list of real font names; that is, a name corresponding to each font

file. For example,

Arial

;

Arial, Italic

;

Arial, Bold

; etc.. For the user, this is not the m

ost useful way to list

fonts, however. Instead, the app can ask for a list of

logical

fonts

 that correspond to font families, such as

Arial

and

Tahoma

. In other words, variations such as italic and bold are suppressed.

19

There is another way in which an ap

plication can enumerate logical fonts. To understand this, recall from

§

2.3

 that a a single TrueType font or font family can easily have glyphs that cover several different

Windows codepages, and that it can contain information

 regarding which codepages it will support. Thus,

an application can also enumerate fonts as logical fonts that correspond to a font family in combination

with a particular character set.

20

 So, for example, Arial has glyphs that cover the Arabic, Baltic, Ce

ntral

European, Cyrillic, Greek, Hebrew, Turkish and Western codepages. If fonts are enumerated using this

type of logical font, the list of fonts will contain names such as

Arial (Arabic)

,

Arial (Baltic)

, etc. This type

of enumeration is used, for example

, in WordPad on Win95 and Win98. Enumerating logical fonts in

terms of character set

-

specific variants is important for multilingual 8

-

bit apps, as I’ll explain next.

When a keyboard is selected from the system tray, the app is notified and given the

LANGI

D

 and the

character set identifier (charset

ID

) for that keyboard. The app needs to take note of that information; in

particular, it needs to mark the text to indicate which charset is used. At this point, it only makes sense to

use a font that supports th

at charset. If the app has enumerated logical fonts in terms of charset

-

specific

variants (as explained above), then it will be easy to present to the user a restricted list of font families that

support that charset. The app could even automatically activ

ate one of these for text that is subsequently

entered. This behaviour is found in WordPad on Win95 and Win98.This could work the other way as well:

a user can select a particular logical font that combines a font family with a charset (e.g. “Times New

Rom

an (Hebrew)”), and the app could activate a keyboard that matches.

So, a keyboard and a charset

-

specific logical font are selected, each of them corresponding to a particular

codepage. As 8

-

bit characters are entered into the app, the app keeps track of t

he charset

-

specific logical

font that is applied to the text. When the app asks Windows to draw the text, it tells Windows to use that

logical font. Based on this, Windows knows what codepage should be applied to that text. It will then take

the 8

-

bit text

 and translate it into Unicode using that codepage, and the resulting Unicode characters are

used to access glyphs in the font.

And so, we start with 8

-

bit codes from the keyboard, which get stored in the computer as 8

-

bit codes, but

which get translated

into Unicode between the app and the font. This is also what happened with Win3.1,

and follows the basic character processing model shown in

Figure

11

. There are important differences,

however. Win3.1 allowed only a single Windows

 codepage, the system codepage, to be used to map to

Unicode, and therefore limited characters to that one character set. But, in a multilingual, 8

-

bit

Win95

 app,

many codepages can be used, and the codepage can be matched by activating specific keyboards

and

logical fonts. These differences are reflected in

Figure

16

.

What is also different is that an application needs to do some extra work to gain these benefits. It needs to

decide if the codepage associated with a keyboard is on

e that it supports and decide whether to allow the

keyboard layout to be switched, and it needs to keep track of which fonts can be used with which

keyboards. It also needs to enumerate logical fonts in a particular way that lists character set

-

specific

va

riants, and it needs to track which logical font, or at least which charset, is used for each run of text.

19

These two ways of enumerating fonts can be seen in the Fonts control panel by toggling the “Hide variations” option in

the View menu.

20

In addition to numerical identifiers for codepages, such as 1

252 for the “Western” character set, Windows also makes use

of a distinct set of numerical character set identifiers, known as

charset

ID

s

. So, for example, the “Western” character set

has a charset

ID

 of 0, while the “Hebrew” character set has a charset

I

D

 of 177. Given either a codepage

ID

 or a charset

ID

,

Windows provides a means to find the other value.

Understanding Multilingual Software on MS Windows

Page Page Page Page

15151515

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

Figure

16

: Win95 multilingual apps: multiple keyboards, logical fonts, and codepages

21

This paradigm has the potential to su

pport a very large variety of characters. It is constrained to the

inventory of characters supported by the codepages installed on a system, though in principle

MS

 could

continue to invent new codepages to cover more and more languages. Codepages are cumbe

rsome to deal

with, however. Having a single, universal character set makes much more sense, which is the motivation

for Unicode. Thus,

MS

 have chosen not to provide any codepages beyond those that are available for

Win9x:

Codepage ID

Character set

1250

C

entral European

1251

Cyrillic

1252

Latin 1 (also known as “Western” or “

ANSI

”)

1253

Greek

1254

Turkish

1255

Hebrew

1256

Arabic

1257

Baltic

1258

Vietnamese

874

Thai

932

Japanese

936

Simplified Chinese

949

Korean (Wansung encoding)

950

Tradition

al Chinese

Table

2

: Windows codepages

22

21

Note that, in

Figure

16

, the three logical fonts shown on the right correspond to a single font file.

G

 0x47

French (

c

p1252)

8

-

bit

Times (Western)

Font

“G

”

U+0047:

translation via

c

p1252

16

-

bit

8

-

bit

П

 0x47

Russian (

c

p1251)

8

-

bit

Times (Cyrillic)

Font

“П

”

U+041F:

translation

via

c

p1251

16

-

bit

8

-

bit

Γ

 0x47

Greek (

c

p12

53)

8

-

bit

Times (Greek)

Font

“Γ

”

U+0393:

translation

via

c

p1253

16

-

bit

8

-

bit

0x47

Times (Cyrillic)

0x47

Times (Greek)

0x47

Times (Western)

Understanding Multilingual Software on MS Windows

Page Page Page Page

16161616

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

Even so, applications designed for Win95 had the potential for working with an interesting variety of

languages that used very different scripts. In actual practice, Win95 was not limited by c

odepages as much

as it was by limitations in input methods and rendering. These issues are discussed further in §

5

.

As noted in §

4.1

, support for multi

-

byte codepages used for Far Eastern languages

(cp932, cp936, cp949,

cp950) requires special programming. This represents an additional limitation in applications that follow

the

Win95

 paradigm: they will not necessarily be able to support multi

-

byte codepages. For example,

MS

Word

95 was developed usi

ng this paradigm, but the US version of that application does not support

multi

-

byte codepages.

Before continuing to look at other paradigms, let’s consider what happens with a

Win3.1

-

style app when it

runs on Win9x/Me. Such apps don’t do anything in the w

ay of keeping track of what keyboard is active,

what character set applies to each run of text, or what charset

-

specific logical fonts were available. It simply

accepts and stores 8

-

bit text, and asks Windows to draw that text. While drawing the text, Wind

ows

automatically converts the text to Unicode using the Windows system codepage. All of that still works on

Win9x/Me. Those versions of Windows provide extra multilingual functionality, but apps don’t need to

take advantage of it.

Win3.1

-

style apps simply

 don’t.

So, for example, when running Shoebox 4 on a US version of Win98 (for which the system codepage is

cp1252), it will allow me to select a Thai keyboard (which is associated with cp874), but instead of showing

Thai characters, it will simply interpr

et the 8

-

bit codepoints that come from the keyboard in terms of

cp1252 (i.e. I see various accented Roman characters from the upper half of cp1252).

These first two paradigms fall into the single “8

-

bit/

ANSI

” cell of

Table

1

 (the

upper left cell). The

distinction between them has to do with whether the app uses one codepage or multiple codepages. This

suggests a third, independent dimension of variation, in addition to the 8

-

bit versus Unicode and “

ANSI

”

versus “wide” distinctions

we have discussed. In practice, the one

-

 versus many

-

codepage distinction is

relevant only for the “8

-

bit/

ANSI

” combination: it doesn’t make sense for an “

ANSI

” app to store Unicode if

it is only working with the characters in a single 8

-

bit codepage (ther

e is no advantage over storing 8

-

bit

text), and a “wide/Unicode” app is not dependent upon codepages at all.

4.3

The

“

ANSI

”/Unicode

paradigm

The third paradigm is defined by applications that register themselves with Windows as “

ANSI

” (using the

“

ANSI

” varian

t of RegisterClassEx

—

see §

2.4

 and §

3.2

) and that store text in terms of Unicode rather

than a legacy, 8

-

bit encoding. (This corresponds to the upper right cell of

Table

1

.)

 The processing models

used are those shown in

Figure

12

, when running on Win9x/Me, and

Figure

15

, when running on

WinNT/2K. The difference between these two ways of processing lies entirely in the operat

ing system;

there are no differences within the application itself.

The additional mechanisms that such an app uses

—

keyboards, charsets, etc.

—

are very similar to those

described above for the

Win95

paradigm. There are some key differences, however.

As seen

 in figures 12 and 15, an app that follows this paradigm will always receive 8

-

bit codepoints from

the keyboard. When the keyboard is activated, the app is given the

LANGID

 and charset. It can take either

piece of information and ask Windows what the corre

sponding codepage is. Using that codepage, the app

immediately converts each 8

-

bit codepoint as they are received into 16

-

bit values, which is how the text is

stored. Since the app now has the Unicode value for the character, a call into the font to get th

e appropriate

glyph can be made directly without the need for any further conversion.

22

The Korean word 왼성

 “wanseong” means ‘precomposing’. The Korean codepage, cp949, encodes Korean syllables as

precomposed forms. It covers the most common combinations of jamo, but not all possible combinations. At one time,

MS

 had defined a different codepage for Korean, c

p1361, that used “Johab” (조합

, ‘combining’

) encoding, which

represents each syllable in terms of the component jamo. This was capable of representing all possible combinations. The

Johab codepage is no longer supported, however.

Understanding Multilingual Software on MS Windows

Page Page Page Page

17171717

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

A Unicode app will have different font handling than an 8

-

bit, Win95

-

style app. Since there is no need to

convert to Unicode when accessing the font, it is not necessary

 to enumerate logical fonts that distinguish

among charset

-

specific variants. This has a benefit of being able to present a shorter list of fonts to the user,

and the user is not burdened with understanding the charset distinctions. On the other hand, it a

lso means

that a change in font will not, in general, give the app enough information to know whether the keyboard

needs to be changed. So, for example, a user may want to enter Hebrew text using the Arial font family, but

simply selecting Arial isn’t enou

gh for the app to know that the user wants to enter Hebrew text

—

Arial can

also support text in a number of other languages. Thus, the user must do something else to indicate a

change, and this would typically be done by activating a different keyboard usin

g the keyboard menu in the

system tray.

The behaviour described here can be seen in Word 2000 when running on Win9x/Me.

23

In principle, applications that follow this paradigm are capable of storing any Unicode character. They are

still limited by codepages

for keyboard, input, however. This issue is discussed further in §

5

.

4.4

The

“Wide”/Unicode

paradigm

The fourth paradigm is defined by applications that register using the “wide” variant of
RegisterClassEx

. In actual practice, all

such apps store text as Unicode, even though this is not strictly

necessary.

24

 Thus, the paradigm corresponds to the lower right cell in

Table

1

. The character processing

model that is used is shown in

Figure

13

.

This paradigm uses the simplest processing model, which doesn’t involve any conversion between 8

-

 and

16

-

bit encodings, and doesn’t depend in any way upon codepages. When a keyboard is activated, the

application may want to note the

LANGID

, but it

does not need to be concerned with the charset or

codepage

—

the charset is always Unicode. The application can also enumerate fonts as font families,

without needing to distinguish between charset

-

specific logical fonts.

The behaviour described here can be

seen in Word 2000 when running on WinNT/2K.

25

In terms of the range of characters supported, applications that follow this paradigm are limited only by

input methods and rendering issues (see §

5

). They are otherwise capable of s

upporting any Unicode

character.

The only drawback to this paradigm is that applications that use it can only run on WinNT/2K. For many

developers, this would limit the market for the product too much.

26

 One way for a developer to deal with

this would be to

 create

two

 versions of an application: a “wide”/Unicode version for use on WinNT/2K,

and an “

ANSI

”/Unicode version for use on Win9x/Me. These can even be provided together in a single

distribution package using an installer that detects which version of W

indows the software is being

installed on. A better solution, though, might be to adopt the

combined “wide” / “

ANSI

” plus Unicode

paradigm, which is discussed next.

23

Word 2000 does not follow

 this exact paradigm, however. Rather, it uses the

combined “wide” / “

ANSI

” plus Unicode

paradigm discussed in §

4.5

.

24

See the discussion regarding the possibility of “wide” 8

-

bit apps in §

3.3

25

A

s mentioned in note

23

, though, Word 2000 actually uses the

combined “wide” / “

ANSI

” plus Unicode

paradigm discussed

in §

4.5

.

26

That may not be true for applications that are intended for specific

 “vertical” markets. It does apply to most or all of the

kinds of applications that would be of interest to linguists, translators and other language workers, however.

Understanding Multilingual Software on MS Windows

Page Page Page Page

18181818

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

4.5

The

combined “wide” / “

ANSI

”

plus Unicode

paradigm

This last paradigm recognises the benefi

ts of the

“wide”/Unicode

paradigm but also the limitations of

Win9x/Me, and aims to offer the best solution available for each platform within a single application. To do

this, before an application calls the RegisterClassEx

 function while it is initialisi

ng (i.e. when the user

runs the program), it first determines what version of Windows it is running on. If it is running on

Win9x/Me, then it will register as “

ANSI

”. But if it is running on WinNT/2K, then it will register as “wide”.

This will allow it to

take advantage of the benefits of “wide”/Unicode support on WinNT/2K, but also run

on Win9x/Me, offering the best capabilities that are available on those systems.

This has significant implications for how the application is designed: it has to be able to

work in two

somewhat different modes. In “wide” mode, there is no need to pay attention to charsets or codepages, and

no need to convert between 8

-

 and 16

-

bit encodings. When running in “

ANSI

” mode, however, it must pay

attention to the charset and codepag

e for a given keyboard, and it must convert characters as they are

received. In other words, an application of this sort must be able to use either the character processing

model shown in

Figure

12

 or that shown in

Figure

13

, depending upon which version of Windows is

present. This involves additional work for the developer. It provides the best overall capabilities, however.

Given that this paradigm actually combines the previous two paradigms, using one

 or the other according

to the system on which an application is running, this paradigm doesn’t fit into any of the individual cells

shown in

Table

1

. Rather, it encompasses both of the cells in the right

-

hand column.

This is the

paradigm that has been used, for example, with

MS

 Office 2000.

The range of characters that can be supported by applications that follow this paradigm is affected by the

platform on which it is running. Codepage limitations apply when running on Win9x/Me,

 but not when

running on WinNT/2K. Input methods and rendering may also be factors in either case. See §

5

 for further

details.

5.

Input method, rendering and codepage limitations

The five paradigms I have described vary considerab

ly in the range of writing systems that they can

support. Because the

Win3.1

 paradigm uses a single codepage, it is capable of supporting only certain

character sets, and it is not designed to allow very different writing systems to be combined in a single

document (except that English and other writing systems that require only the

ASCII

 character set are

always available). On the other hand, a

“wide”/Unicode

 app (or a

combined “wide” / “

ANSI

” plus Unicode

app when running in “wide” mode) is capable of wor

king with any Unicode characters. There are still

limitations related to input methods and rendering systems, however. Also, we have seen that “

ANSI

”

applications are constrained by codepages. We will consider these various limitations further here.

Some i

mplementations have attempted to overcome some of these limitations by using custom encodings,

custom

-

encoded fonts and special input or rendering systems, such as Keyman and

SDF

.

27

 These are

discussed in §

6

.

5.1

Input method and re

ndering limitations

We have seen that the

Win3.1

 paradigm supports the characters of only a single codepage, but that the

other paradigms can support a much larger inventory of characters. There are issues related to input

methods and rendering that apply

to all of these, however. I’ll discuss those here.

Obviously, a user can work only with languages for which appropriate keyboards and fonts are installed on

their system. Note that the keyboards and fonts don’t have to go together. For instance, a system c

an have a

27

The

Script Definition File

 system was developed by SIL International to provide compl

ex

-

script rendering capabilities

within the

Win3.1

 paradigm. See §

6

.

Understanding Multilingual Software on MS Windows

Page Page Page Page

19191919

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

Japanese font without having to have a Japanese keyboard. In fact, Office 97 included Japanese fonts and

codepages that could be installed on a US version of Win95, so that users could open and view Japanese

documents created using Japanese versi

ons of software. It did not provide keyboards, however, so there

was no way for someone using US Win95 and Office 97 to edit such documents.

In addition to having fonts and keyboards installed, some languages also requires special support for either

input

or for complex rendering. For Far East languages, input is done using input method editors

28

, and

these require special support in 8

-

bit applications in order to deal with multi

-

byte encoding issues. Several

languages, such as Thai, Arabic and Hebrew, requi

re special rendering support. For Thai, it is possible for

this to be provided entirely by the operating system. For Arabic and Hebrew, on the other hand,

applications must be specially designed to handle right

-

to

-

left paragraph layout.

Special, script spe

cific needs have been handled in different ways as Windows has evolved. As has been

mentioned, Win3.1 was adapted into localised versions designed for specific regional markets. Each of the

localised versions added additional code to handle the special inp

ut, encoding and rendering requirements

of the writing systems for that one region. It was also assumed that applications would be localised for

regional markets, just as Windows itself was. Thus, a developer might create a Korean version of their

applicat

ion, in which they added support for a Korean input method editor and for multi

-

byte encodings,

and perhaps a separate Thai version, with additional code to deal with Thai line

-

breaking behaviours.

The situation for Win95 was slightly improved: the core o

f Win95 came in only three versions: one for

Arabic and Hebrew, to provide right

-

to

-

left support; one for Far East languages, to provide mechanisms

for input method editors and multi

-

byte encodings; and another version for other markets.

29

 Again, it was

exp

ected that applications would be adapted for the different regions.

Around the time that Win95 was being developed,

MS

began to develop new rendering technologies to

address the needs of complex scripts. They continued with the approach that applications n

eeded to be

adapted for particular markets. This can be seen from the TrueType Open 1.0 Specification:

As much as possible, the tables of TrueType Open define only the information that is

specific to the font layout. The tables do not try to encode informa

tion that remains

constant within the conventions of a particular language or the typography of a particular

script. Such information that would be replicated across all fonts in a given language

belongs in the text

-

processing application for that language

, not in the fonts. [Microsoft

(1995), p. 3.]

The implication of this statement means, for example, that if an application is to support Arabic script,

then the application needs to understand the rendering behaviours of that script. All that the TrueType

Open support will provide is whatever is specific to a particular font.

This situation has changed considerably, however. In recent years,

MS

 has committed to a globalised

approach to software in which a single version of software is designed to work for a

ll regional markets.

Thus, Win2K, Office 2000 and Internet Explorer 5.x have each been designed to support the writing

systems of all of the regional markets that

MS

 has targeted.

30

 A key element in facilitating this has been to

incorporate support for comp

lex

-

script rendering directly into Win2K, or in the case of Internet Explorer

and Office to make it an installable addition to Win9x/Me. As a result, it is possible on US versions of

Win9x/Me to edit and view text in various languages that use complex scri

pts, such as Thai, Arabic or

Hebrew.

28

Input method editors are special types of input methods designed to handle very large character sets, such as are needed

for Chinese, Japanese and Korean.

For more information, see Constable (2000b) or Kano (1995).

29

Official announcements indicated that there were only three code bases. In Thai Win95, additional code was added to the

US version in order to support Thai rendering and line breaking.

30

To be

 completely accurate, the code for Thai support in Office 2000 was not ready in time. Thus, there is still a separate

version of Office 2000 to support Thai.

Understanding Multilingual Software on MS Windows

Page Page Page Page

20202020

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

For instance, if you install Internet Explorer 5.5 on one of these systems, the installation options allow you

to enable support for Thai, Hebrew, Arabic, and Far East languages. Enabling support for one of these will

cause Internet Explorer to install the necessary fonts, keyboards, codepages (if not present) and rendering

support.

Much of this global support is provided at the system level. Thus, if you install Internet Explorer 5.5 onto

US Win98 and select Thai langu

age support in the setup options, this will make it possible to work with

Thai text in WordPad. This is possible because Thai input can be handled by a keyboard that generates

codepoints in an 8

-

bit, single byte encoding (WordPad doesn’t need to handle inp

ut method editors in

order to deal with Thai), and because the system extensions for rendering are automatically available to the

standard text

-

drawing

API

 functions.

There are some minimal requirements to take advantage of such system

-

level support, thoug

h. First of all,

rendering these various scripts is possible only if the Unicode values of characters are available. This

means that an application must use one of the Unicode

-

based paradigms, or must use the appropriate

codepages. For

Win3.1

-

style apps, s

upport is limited to the system codepage only. If the app is able to work

with that codepage (not necessarily true in the case of multi

-

byte codepages), it may be able to display the

text. (There may also be other rendering issues, though, as described bel

ow.) But it will not be able to work

with more than the system codepage, no matter what support amount of support for other scripts may also

be available on that system. Applications that follow the other paradigms are much better positioned in

this regard

, since they either support multiple codepages (though not necessarily multi

-

byte codepages), or

else they support Unicode directly.

There may be other requirements for rendering, however, specifically in the case of right

-

to

-

left scripts like

Arabic and H

ebrew. If an application is not designed to support right

-

to

-

left paragraph layout, it will not

be able to correctly render these scripts, regardless of which paradigm it follows. Likewise, special support

must be designed into an application if it is to b

e able to handle vertical layout of East Asian scripts.

There are also some minimal requirements in terms of input: for any application to support input of Far

East languages, it must be specially written to work with input method editors.

Which of the fiv

e paradigms an application uses has a major impact on the multilingual capabilities of that

application. We have seen here, though, that there are other important factors: right

-

to

-

left paragraph

layout, vertical paragraph layout, and the ability to work w

ith input method editors. Each of these requires

additional work on the part of an application developer. Many applications simply do not include the

additional code that is required for these capabilities.

There is an additional rendering limitation in wh

at

MS

offers that is beyond the control of an application

developer:

MS

 has thus far provided fonts and rendering support for only so many scripts and writing

systems around the world. They have been making significant advances in this regard, and are offe

ring

support for an increasing number of languages that use non

-

Roman scripts. For example, recent work has

included Hindi, Divehi, and Assyrian. For linguists working with minority languages, the ability of

MS

-

supplied to render minority

-

language writing

systems may continue to be a concern for some time, but

significant progress has been made. Windows is capable of working with many more languages today than

just a few years ago. As mentioned, though, everything the

MS

 contributes is of no use unless appl

ications

are written to take advantage of it.

5.2

Limitations of “

ANSI

” apps and codepages

Each of the paradigms other than the

Win3.1

 paradigm are able to support a large variety of characters. We

have seen, however, that applications that register themselves

 as “

ANSI

” are constrained by a significant

limiting factor: codepages. Whether an app stores text using Unicode or 8

-

bit representations, characters

are received from the keyboard as 8

-

bit codes. Therefore, there must be a conversion via a codepage at

som

e point before the character reaches the font. There are only a limited number of Windows codepages

Understanding Multilingual Software on MS Windows

Page Page Page Page

21212121

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

defined, however, as seen in

Table

2

. There are many scripts for which there are no codepages; for example,

Devanagari, Bengali, B

urmese, Khmer, Ethiopic, and many others.

In terms of rendering, the codepage limitation creates a minor distinction between apps that store text as

Unicode (whether they are “wide” or “

ANSI

”) and apps that follow the 8

-

bit

Win95

 paradigm. Because an 8

-

bit

Win95

-

style app uses an “

ANSI

” variant of a text

-

display

API

 function to display text, a codepage is

needed in the rendering process (see figures 11 and 14). As a result, such applications can only display

characters that are supported by a Windows codepa

ge installed on the given system. In contrast,

applications that store text as Unicode will use a “wide”

API

 function to display text, meaning that no

codepage is necessary in the rendering process (see figures 12, 13 and 15). So, for example, Word 97 can

display

any

 Unicode character that gets entered into the text (assuming appropriate fonts and complex

-

script rendering support), even if there is no corresponding codepage, and regardless of whether it is

running on Win95 or Win2K.

Of course, there needs

to be some way to get Unicode characters into the application. For an

ANSI

-

registered app, keyboard input of Unicode characters requires a codepage (see figures 12 and 15). This

means that there is no way to enter characters into such an app if the charact

ers are not supported by some

keyboard. This is, therefore, a much bigger limitation than exists for rendering. So, for example, Word

2000 can display Ethiopic characters, but no mechanism exists for keying Ethiopic characters into Word

2000 when running o

n Win9x/Me.

31

Because Win9x/Me only allows

ANSI

-

registered apps, the keyboard/codepage limitation applies to

any

application when running on these platforms.

5.3

Breaking the codepage barrier for keyboarding in

ANSI

-

registered apps

We have seen that apps that

initialise themselves as “

ANSI

”

 (and therefore all apps running on Win9x/Me)

will receive WM_CHAR

 messages containing only 8

-

bit codepoints, and that this limits these apps to working

only with characters that are in some Windows codepage. If it were not f

or the codepage barrier on the
WM_CHAR

 messages, an

ANSI

-

registered app that stores text as Unicode would be able to support any

Unicode characters.

If there were another message that could be used in place of WM_CHAR

 that always contained Unicode

charact

ers, this limitation could be removed. Recently, Microsoft did just that: they added a new system

message into Win32, WM_UNICHAR

. This message always passes Unicode

-

encoded characters, regardless of

the version of Windows or whether the app has registered

itself as “

ANSI

” or as “wide”. It requires

applications and keyboards that are specifically designed to support this new message, but it doesn’t

require any changes in the operating system itself. Thus, it can be used on existing Win9x systems.

The net ef

fect of this message is to make it possible for an “

ANSI

” application to process characters as

though it were a “wide” application. This gives us a new processing model:

31

Since Word 2000 follows the

combined “wide” / “

ANSI

” plus Unicode

 paradigm, it registers as wid

e when running on

WinNT/2K, and so it would be possible to key Ethiopic characters into Word when running on those systems.

Understanding Multilingual Software on MS Windows

Page Page Page Page

22222222

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

Figure

17

: “

ANSI

”/Unicode app: 8

-

bit keyboard input, or Unic

ode keyboard input using WM_UNICHAR

Use of the WM_UNICHAR

 message makes sense mainly for the

“

ANSI

”/Unicode

 and

combined “wide” / “

ANSI

”

plus Unicode

 paradigms. Support for this message would be a useful addition for applications that follow

either of thes

e paradigms, significantly increasing the range of Unicode characters that users can work with

in these applications. It particularly benefits users working on Win9x/Me, but can also be of benefit for

“

ANSI

”

-

only apps when running on WinNT/2K.

The SIL Fiel

dWorks applications will support this new system message, as will Keyman 5.

32

 We assume that

support is likely to start appearing in new versions of at least some Microsoft applications.

6.

Multilingual apps and custom

-

encoded fonts

We have dealt with a lot of

 information regarding how Windows is designed to work with multilingual

applications (or

not really

work with multilingual applications, in the case of Win3.1 and earlier). An

interesting question that arises is how these mechanisms for handling multiling

ual text are affected by the

use of custom

-

encoded fonts.

Custom

-

encoded font implementations have been used primarily to overcome one of two limitations:

Win3.1

-

style apps only support the system codepage

complex rendering support for a given script is n

ot available on the versions of Windows being used,

or are not available to the application, which is most typical of

Win3.1

-

style apps

33

There are other possible reasons why one might want to create a custom implementation, but in every case

with which I a

m familiar, one of these two reasons has been the motivating factor.

These custom implementations are, therefore, mainly intended for applications that follow the

Win3.1

paradigm. In most cases, they are used together with special keyboards that have been

 created using a

program such as Keyman. In many cases where complex script behaviours are involved, the necessary

transformations are handled within an intelligent keyboard. In some cases, implementations have been

done using a rendering system such as SD

F to handle contextual glyph selection.

34

 In both cases, all that is

32

Version 5 of Keyman is the first version of that product to support Unicode

-

encoded characters as well as 8

-

bit

characters. At th

e time of writing, Keyman 5 is still in the beta

-

review process.

33

The reason that this is most typical of

Win3.1

-

style apps is because they don’t use Unicode, and they also don’t track

codepage or charset

ID

s so that the Unicode values of characters can

be determined.

34

The

Script Definition File

 system was introduced briefly in note

27

. Basically, it allows codepoints to be mapped into other

codepoints using context

-

sensitive rules.

U+0047

16

-

bit

Font

“

G

”

U+0047:

U+12A2

16

-

bit

Font

“ኢ

”

U+12A2:

U+0047

16

-

bit

16

-

bit

G

 0x47

English (

c

p1252)

8

-

bit

0x47

translate

via

c

p1252

WM

_

CHAR

WM

_

UNICHAR

Amharic (Ethiopic

—

no codepage)

U+12A2

U+12A2

“

ANSI

” app

 U+12A2

Understanding Multilingual Software on MS Windows

Page Page Page Page

23232323

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

happening is that codepoints are being mapped to other codepoints within the same codepage. Otherwise,

the character processing model that the application is utilising is unchanged.

35

Pote

ntially, a custom

-

encoded font can still work in applications that follow one of the other paradigms. It

is important to understand, though, that a custom

-

encoded font is tied to a particular codepage: the

codepage that they redefine, which is the system c

odepage for the systems on which the implementation

was expected to be used. In most cases, custom fonts were built to work on top of codepage 1252. In order

to work as intended, the codepage which the font is redefining must be available to an application

. Because

the life cycle of a character often involves translations between 8

-

bit codes and Unicode values, the fact that

custom

-

encoded fonts are dependent upon a particular codepage presents many opportunities for

problems.

For example, suppose you crea

ted a plain text file in Notepad on US Win98 using a custom

-

encoded font

that was designed for use on a US version of Windows (for which the system codepage is cp1252). Suppose

that you then give the file to someone using a Russian version of Win98 (on whi

ch the system codepage is

1251). They would not be able to view the file, even if they have the custom font. The reason for this is that

Notepad on Win9x/Me follows the

Win3.1

paradigm: it encodes 8

-

bit text but utilises only the Windows

system codepage. B

ecause the font and file were created in the context of cp1252, the recipient will likely

see lots of empty boxes when displaying the file on a system that uses cp1251 as its default. In the contexts

in which the font was expected to be used, the transform

ations from codepoint to glyph would be as in

Figure

18

:

Figure

18

: Rending a non

-

standard character using a custom font and codepage 1252

36

35

The SDF system is actually a little mo

re capable in that it is not limited on output to using the same codepage. Rather, it

can provide a mapping directly to Unicode. When used in this way, therefore, it is acting like a custom codepage that

supports context

-

sensitive mappings and that is used

 in the rendering process.

An application that utilizes this feature would need to use a variant of the processing model shown in

Figure

12

. Rather

than receiving an 8

-

bit codepoint from the keyboard, converting it via a codepage

, and then storing the Unicode value, the

application would store the 8

-

bit value, and then convert it to Unicode using the SDF system just prior to rendering. The

only application to date that supports this capability of SDF is

ScriptPad

, which has also b

een developed by SIL

International.

It is important to note that the SDF system differs from more advanced rendering technologies, such as

OpenType

and the

SIL Graphite

 system, in several important respects. In particular, OpenType and Graphite operate dir

ectly on glyphs,

transforming one string of glyphs into another. In contrast, the SDF system transforms character codes into other

character codes. Considered another way, the output from a font’s cmap

table constitutes the input to OpenType and

Graphite.

But the output of SDF is used as input into the cmap table in a font. Solutions based on SDF generally use

custom encodings, or custom

-

encoded fonts, or both.

36

It should be noted that the Unicode value U+0192 is “ƒ”, not “Ł

”. This is a “custom

-

encoded” f

ont, remember.

U+0192

g

l

y

ph

 lookup

custom font

‘cmap’

table

Ł

‘gly

f

’

table

U+0192

0x83

translate via

codepage 1252

Understanding Multilingual Software on MS Windows

Page Page Page Page

24242424

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

On a Russian system, however, the following transformation would

 occur:

Figure

19

: Rending a non

-

standard character using a custom font and codepage 1251

37

Stating this problem more generally, custom

-

encoded “hacked cp1252” fonts will not work on localised

versions of Win3.1 that use a differen

t system codepage. They will also not work in localised versions of

Win9x/Me or WinNT/2K in applications that rely on the default Windows codepage if that codepage is

something other than cp1252.

Because keyboards are associated with codepages, mismatches

can cause problems for custom fonts. For

example, if you work in a multilingual app such as WordPad (on Win98) and activate a keyboard that uses

a codepage other than the one for which the custom font was designed, you will end up seeing boxes.

Keyman 3.2

and earlier were somewhat neutral regarding codepages, but that means that a multilingual

app will convert input from Keyman 3.2 according to the codepage associated with whatever Windows

keyboard is currently activated. Again, that can result in seeing em

pty boxes.

In Keyman 4, it became possible to specify a specific

LANGID

 with a keyboard. What wasn’t obvious to all is

that this would cause a specific codepage to be associated with that keyboard. That would mean, for

example, that if a keyboard intended

 for use with the SIL Ezra font package (a custom

-

encoded font based

on cp1252) was created for use with Keyman 4 and was assigned the

LANGID

 for Hebrew, then that

keyboard would not work with any app that made use of the multilingual support mechanisms in

Windows. Again, the user would be seeing empty boxes because 8

-

bit

-

to

-

Unicode conversion would be

done using the Hebrew codepage (cp1255) rather than cp1252.

The codepage intended for a custom

-

encoded font must, therefore, be available to the application

and

applied to any text that is formatted with that font. It must not be enforced too strongly, though, otherwise

the user will experience unintended behaviours. This can affect things such as upper

-

 or lower

-

case

mappings, and line breaking. Thus, an appl

ication may break lines in what the user perceives to be the

middle of words. Or an application’s “intelligent” features for things like sentence

-

initial capitalization or

smart quotation marks may result in undesired changes.

In order to work around some

of these behavioural problems, many custom fonts have been implemented

as

symbol

-

encoded

 fonts. This effectively gives them special “symbol” codepage, which is available as a

separate mapping on any version of Windows. In fact, symbol encoding uses part of

 the Unicode private

-

use area for encoding. Specifically, the glyphs in a symbol

-

encoded font are accessed in the font’s cmap

table using Unicode values in the range U+F020

–

U+F0FF.

37

In fact, what happens in this situation is that the cmap table does not contain any entry for U+0453. In this situation,

Windows selects a special default glyph, which is a box in most TrueType fonts.

U+0453

glyph

 lookup

custom font

‘cmap’

table

�

‘gly

f

’

table

U+0453

0x83

translate via

codepage 1251

Understanding Multilingual Software on MS Windows

Page Page Page Page

25252525

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

Symbol

-

encoded fonts that are used for custom character sets are susceptib

le to a number of problems,

specifically when used in applications that store text as Unicode. These problems can result in the loss of

data. These issues have been discussed in depth in Constable (2000c) and Hallissy (1998).

Custom

-

encoded fonts were a se

nsible solution for people who had to create multilingual documents in the

days of Win3.1, when there was no other way to do so. In the environment of newer technologies, however,

they are increasingly becoming an albatross that gets in our way. For some u

sers, there may still be need to

use custom

-

encoded fonts for a while yet. But wherever possible, we need to be moving away from custom

encodings and toward industry standards, which at last are beginning to provide the kinds of solutions we

have been need

ing.

7.

Old wineskins and new wine: why Windows’ multilingual support works for WordPad but

not for Shoebox

At last, we return to the original question that came from that person in Thailand:

“I installed support for

Thai on my US Win98 machine and can now ed

it Thai in programs like WordPad and Word; can I get this to

work in programs like Shoebox and Paratext?”

 The answer to this is, “No.” By now, hopefully you have

some idea why. I’ll explain, just to be sure.

The multilingual support components

—

fonts, keybo

ards, rendering engines

—

that are provided by

Microsoft are base on Unicode or the standard Windows codepages. They are useful only for applications

based on the

Win95

 paradigm or on one of the three Unicode

-

based paradigms. In contrast, our legacy

linguist

ic applications that deal with text

—

Shoebox, Paratext, LinguaLinks,

BART

, Fiesta and others

—

were

designed around the

Win3.1

paradigm. They assume a single codepage, and have relied on the use of

custom

-

encoded fonts to deal with alternate character sets. T

hey don’t make use of any of the mechanisms

for multilingual support available in Windows: Unicode,

LANGID

s, codepages, charsets, logical fonts, etc.

Multilingual support in Windows is starting to flourish, but the capabilities being provided by Windows

de

pend upon applications utilising the multilingual support mechanisms that are made available. Our

legacy applications miss out on all the fun because they don’t know the first thing about any of this stuff.

What’s the answer? We need some new wineskins

—

ne

w applications that will build on new technologies.

The SIL FieldWorks applications are intended to do just that.

Fortunately, we are at a point at which codepages are really starting to become obsolete. Managing multiple

codepages made life more difficul

t for software developers, and limited users for whom existing codepages

were inadequate. Unicode removes the need for codepages, but supporting pieces in the infrastructure,

such as fonts and keyboards, also need to work with Unicode. Keyboarding has been

 a problem,

particularly for Win9x/Me, but developments such as WM_UNICHAR

 and Keyman 5 are beginning to remove

those barriers. There are still limitations to the number of scripts and writing system for which

MS

provides

fonts and rendering support, but t

hey continue to expand their coverage. The other piece to the puzzle is

applications: they need to follow a Unicode

-

based paradigm, and they need to provide special support for

input method editors and non

-

Roman paragraph layout options.

The necessary pie

ces are starting to fall into place. For users working with multilingual text, there is finally

light at the end of the tunnel, and it is getting brighter.

8.

Bibliography

Constable, Peter. 2000a. Font issues in MS Windows and Office.

NRSI Update, 13.

Constab

le, Peter.

2000b. Understanding characters, keystrokes, codepoints and glyphs: Encoding and

working with multilingual text. Available in

CTC Resource Collection 2000

CD

-

ROM

, by SIL

International. Dallas, SIL International.

Understanding Multilingual Software on MS Windows

Page Page Page Page

26262626

 of of of of

26262626

Peter

Constable

November

01

,

2000

 Rev:

16

Constable, Peter. 2000c. Unicode

 issues in Microsoft Word 97 and Word 2000. Available in

CTC Resource

Collection 2000

CD

-

ROM

, by SIL International. Dallas, SIL International.

Hallissy, Bob. 1998. The BoxChar Mysteries presents… The €

uro case. Available in

Resource Collection 98

CD

, by In

ternational Publishing Services (1998). Dallas: SIL International. Also available in

CTC

Resource Collection 2000

, by SIL International (2000). Dallas: SIL International.

Kano, Nadine. 1995.

Developing international software for Windows

® 95 and Windows NT™.

 Redmond,

WA: Microsoft Press. Also available online at

http://msdn.microsoft.com/library/books/devintl/S24AE.HTM

.

Microsoft Corporation. 1995.

TrueType Open fo

nt specification. Version 1.0.

Redmond, WA: Microsoft

Corporation. Available online at

http://www.microsoft.com/typography/tt/tt.htm

.

http://msdn.microsoft.com/library/books/devintl/S24AE.HTM
http://www.microsoft.com/typography/tt/tt.htm

	1. Introduction
	2. Basics about codepages, fonts and keyboards
	2.1 Codepage basics
	2.2 Keyboard basics
	2.3 TrueType font basics
	2.4 “A&W” variations of Win32 interfaces

	3. The life-cycle of a “character”: from keystroke to display
	3.1 Character processing on Win3.1/9x/Me
	3.2 Character processing on WinNT/2K
	3.3 8-bit versus Unicode, and “ansi” versus “wide”

	4. Windows multilingual software paradigms
	4.1 The Win3.1 paradigm
	4.2 The Win95 paradigm: multilingual, 8-bit apps
	4.3 The “ansi”/Unicode paradigm
	4.4 The “Wide”/Unicode paradigm
	4.5 The combined “wide” / “ansi” plus Unicode paradigm

	5. Input method, rendering and codepage limitations
	5.1 Input method and rendering limitations
	5.2 Limitations of “ansi” apps and codepages
	5.3 Breaking the codepage barrier for keyboarding in ansi-registered apps

	6. Multilingual apps and custom-encoded fonts
	7. Old wineskins and new wine: why Windows’ multilingual support works for WordPad but not for Shoebox
	8. Bibliography

