
1

Sorting and CollatingSorting and Collating

Sharon Correll
SIL Non-Roman Script Initiative
Copyright © 2001, 2004 SIL International

This presentation describes the complexites of sorting textual data in a way
that is natural and appropriate for human use. Specifically it describes a
standard collation algorithm and how it can be used to implement sorting of
multilingual data.

2

Sorting and collating

Sorting:Sorting: ordering dataordering data
Collating:Collating: comparing stringscomparing strings

Why sort?Why sort?
•• DisplayDisplay
•• SearchingSearching
•• FilteringFiltering

The words “sorting” and “collating” are often used interchangeably, but
they have slightly different meanings. Sorting refers to the process of putting
a set of data in a specified order, while collating refers to the process of
comparing two strings to determine which is “greater”, or if they are equal.
Collating can be thought of as a fundamental part of the process of sorting.

Sorting, in turn, is needed to allow other kinds of processing to occur. Often
data needs to be displayed in sorted order. Searching sorted data is much
more efficient than searching randomly-ordered data. Sorting and collating
are also used to support the process of filtering to display only data the
meets certain specifications.

3

Collation complexities

Function of both language and scriptFunction of both language and script
•• Same language can be written with different Same language can be written with different

scripts that can have different sorting scripts that can have different sorting
conventions.conventions.
•• Standard Greek: Standard Greek: αα < < ββ < < γγ < < δδ

RomanizedRomanized transliteration: a < b < g < d transliteration: a < b < g < d -- NOT!NOT!

•• Tai Dam: Roman vs. Lao collation conventionsTai Dam: Roman vs. Lao collation conventions

•• Reality:Reality: often having often having encodingsencodings that permit multithat permit multi--
script use and multiple collations is not practically script use and multiple collations is not practically
feasible.feasible.

Sorting is a function of both language and script. A single language can be
written with different scripts that have distinct sorting conventions. For
instance, in standard Greek, the letter gamma collates between beta and
delta. But when Greek data is transliterated into the Roman script, the result
is incorrectly ordered data. This is because gamma is transliterated to “g”,
which does not come between “b” (beta) and “d” (delta).

Similarly, the Tai Dam language can be written with both the Roman and
Lao scripts, which have different collation conventions. So if a set of data
stored in Roman script and sorted according to the Roman conventions, then
transliterated to the Lao script, the result will be sorted incorrectly according
to the Lao conventions.

It is often considered a desirable goal on the part of script implementers to
define a single encoding for languages that can be written with more than
one script, making transliteration between the two scripts unncessary.
However, this problem of inconsistent collation is one of the reasons why
this goal is rarely feasible.

4

Collation complexities

Function of both language and scriptFunction of both language and script
•• Languages using variations of the same script Languages using variations of the same script

may have different sorting conventions.may have different sorting conventions.

•• English:English: ce ce << ch ch < cu< cu
Spanish:Spanish: ce ce < cu << cu < chch

•• German: A < German: A < ÅÅ << ZZ
Swedish: Swedish: A < A < Z Z < < ÅÅ

Not only can the same language be written with different scripts having
different sorting conventions, but even a single script can have different
conventions when used for different languages. There are several examples
of this in Roman script. In the traditional Spanish sorting convention, “ch” is
considered a separate grapheme and is sorted as its own letter. So a Spanish
word beginning with “ch” would follow those beginning with “cu”, which
does not happen in English and other Roman-script languages.

Similarly, the A-ring character is used in both German and Swedish. In
German, however, this character is considered a special form of the letter A
and is ordered accordingly, while in Swedish it is considered a completely
independent character and is placed after the letter Z.

5

Collation complexities

Alternate collations depending on useAlternate collations depending on use
•• DictionaryDictionary
•• Telephone bookTelephone book
•• Library catalogueLibrary catalogue

It is even possible for different collations to exist depending on the type of
information being sorted. Often dictionaries use a different sorting
convention from a telephone book, which may in turn be different from a
library card catalog system.

6

Standard collation framework

StandardsStandards
•• ICU Collation Framework (UTS#10)ICU Collation Framework (UTS#10)
•• ISO 14651ISO 14651

Basic approach: levels of comparisonBasic approach: levels of comparison
1.1. Base characterBase character
2.2. DiacriticsDiacritics
3.3. UpperUpper-- and lowerand lower--casecase
4.4. Punctuation and special charactersPunctuation and special characters

There is an approach to implementing collations that been adopted by
several standards bodies such as Unicode and ISO. It involves defining
multiple levels of distinction at which characters are compared.

A typical set of levels is shown above: the most fundamental level involves
comparing base characters, while ignoring case and diacritics. If two strings
are are equal at this level, the diacritics are compared. If necessary, case is
considered at the third level, followed by punctuation and special
characters.

Note that these levels are what is defined and work well for a wide variety
of languages. However, it is possible to to use the standard framework to
define the levels differently. For phonetic data, for example, one might want
to compare consonants at the first level and vowels at the second. In some
situations case might be considered more signficant than diacritics, and so
correspond to a higher level. The same framework can be used to ignore
certain characters altogether.

7

Standard collation framework: example

Raw binary sort:Raw binary sort:

RoseRose
rere--sortsort
resortresort
resultresult
resumeresume
roserose
rosroséé
rréésumsuméé

Example: EnglishExample: English

resumeresume
rere--sortsort
RoseRose
resultresult
rosroséé
rréésumsuméé
resortresort
roserose

We can see the need for a collation framework by comparing it with a raw
binary sort of English data, whose writing system is not even very complex.
Above we can see the results of sorting a set of English words using the raw
Unicode character values. Some of the more blatant problems are the fact
that the capitalized word is placed at the beginning of the list, and the e-
with-acute is placed at the end.

8

Standard collation framework: example

Level 1:Level 1:
Base charactersBase characters

rere--sort, resortsort, resort
resultresult
resume, rresume, réésumsuméé
Rose, rosRose, roséé, rose, rose

Example: EnglishExample: English

resumeresume
rere--sortsort
RoseRose
resultresult
rosroséé
rréésumsuméé
resortresort
roserose

At the first level of comparison, we compare all the base characters, ignoring
case, diacritics, and special characters. The result is shown above on the
right, where words on the same line are considered equivalent.

9

Standard collation framework: example

Level 1:Level 1:
Base charactersBase characters

rere--sort, resortsort, resort
resultresult
resume, rresume, réésumsuméé
Rose, rose, rosRose, rose, roséé

Level 2:Level 2:
DiacriticsDiacritics

rere--sort, resortsort, resort
resultresult
resumeresume
rréésumsuméé
Rose, roseRose, rose
rosroséé

Next we apply the second level of comparison, which places characters
without diacritics before those with them.

10

Standard collation framework: example

Level 2:Level 2:
DiacriticsDiacritics

rere--sort, resortsort, resort
resultresult
resumeresume
rréésumsuméé
Rose, roseRose, rose
rosroséé

Level 3:Level 3:
CaseCase

rere--sort, resortsort, resort
resultresult
resumeresume
rréésumsuméé
roserose
RoseRose
rosroséé

At the third level, upper-case characters are compared against lower-case. In
our example, this causes “Rose” to be placed after “rose” in the sorted list.

11

Standard collation framework: example

Level 3:Level 3:
CaseCase

rere--sort, resortsort, resort
resultresult
resumeresume
rréésumsuméé
roserose
RoseRose
rosroséé

Level 4:Level 4:
Special charactersSpecial characters

resortresort
rere--sortsort
resultresult
resumeresume
rréésumsuméé
roserose
RoseRose
rosroséé

Finally, specially characters are taken into account, such as the hyphen in
“re-sort.”

Note that even after applying the fourth level, it is possible for there to be
differences between the strings that are not taken into consideration. These
words are considered to be exactly equal for the purposes of the colleciton.

12

Special kinds of comparisons

Unicode equivalencesUnicode equivalences
ÅÅ ≡≡ A + A + ˚̊

U+005C U+005C ≡≡ U+0041 + U+02DAU+0041 + U+02DA

ệệ ≡≡ e + e + ̣̣ + + ˆ̂̂̂̂̂̂̂
≡≡ e + e + ˆ̂ + + ̣̣
≡≡ ẹẹ + + ˆ̂
≡≡ êê + + ̣̣

When implementing a collation algorithm, there are special kinds of issues
that need to be taken into account. First of these is the fact that Unicode
defines certain character sequences to be canonically equivalent, which
means all processes must treat them identically. In particular, canonically
equivalent character sequences must be considered exactly equal by the
collation algorithm. Above are shown some examples of sequences that are
canonically equivalent.

13

Special kinds of comparisons

Unicode equivalencesUnicode equivalences

•• Solution:Solution: using normalization forms will greatly using normalization forms will greatly
simplify the collation specification.simplify the collation specification.

When implementing a collation algorithm, putting your data in normalized
form, either NFC or NFD, will greatly help to produce a Unicode-compliant
process.

14

Special kinds of comparisons

Equivalent characters (language specific)Equivalent characters (language specific)
•• Danish: Danish: öö ≡≡ øø , , ææ ≡≡ ää

Character sequencesCharacter sequences
•• Spanish:Spanish: chch,, llll
•• French: French: œœ ≡≡ oeoe

CombinationsCombinations
•• Danish:Danish: aaaa ≡≡ åå

Ignorable charactersIgnorable characters
•• Punctuation: space, hyphen, apostrophePunctuation: space, hyphen, apostrophe

In addition to Unicode canonical equivalences, there are language-specific
equivalences that must be taken into account. Some of these are one-to-one
correspondences, and others involved multiple characters. In addition, there
are special characters that may be considered ignorable in some languages
and sorting situations.

15

Implementation

Sort key generationSort key generation
•• Order orthographic elements (including nulls):Order orthographic elements (including nulls):

•• a < b < c < a < b < c < ……
•• nono--diacdiac < cedilla < acute< cedilla < acute
•• lower < upperlower < upper

•• Define codes for each element at each level:Define codes for each element at each level:
•• Level 1: a = 1, b = 2, c = 3, Level 1: a = 1, b = 2, c = 3, ……
•• Level 2: noLevel 2: no--diacdiac = 1, cedilla = 2, acute = 3= 1, cedilla = 2, acute = 3
•• Level 3: lower = 1, upper = 2Level 3: lower = 1, upper = 2

•• Concatenate sequences of codes for each level:Concatenate sequences of codes for each level:
•• ÇÇab ab = 3, 1, 2, #, 2, 1, 1, #, 2, 1, 1= 3, 1, 2, #, 2, 1, 1, #, 2, 1, 1
•• ccááb = 3, 1, 2, #, 1, 3, 1, #, 1, 1, 1b = 3, 1, 2, #, 1, 3, 1, #, 1, 1, 1

•• Therefore: cTherefore: cááb < b < ÇÇabab

Above is shown the outline for an algorithm based on the standard collation
framework. This could be used as the basis for a collation module in an
application program.

The first step is to define an order for all the orthographic elements in the
writing system. This must include null elements, such as the lack of a
diacritic, as well as any signficant character “features” such as case.

Then a numeric code is assigned to each orthographic element. The codes
are organized by level, with the elements that are signficant at each level
receiving successive values. In the standard Roman collation shown above,
base character values receive corresponding integer values at level 1. The
“null” diacritic is assigned the lowest value at level 2, and the diacritics of
interest receive successive values. At level 3, the lower-case feature is
considered “lower” than the upper-case feature, so the former is given the
value 1 and the latter 2.

Any characters or features that are not assigned a code are considered
insignificant therefore ignorable.

16

Implementation

Sort key generationSort key generation
•• Order orthographic elements (including nulls):Order orthographic elements (including nulls):

•• a < b < c < a < b < c < ……
•• nono--diacdiac < cedilla < acute< cedilla < acute
•• lower < upperlower < upper

•• Define codes for each element at each level:Define codes for each element at each level:
•• Level 1: a = 1, b = 2, c = 3, Level 1: a = 1, b = 2, c = 3, ……
•• Level 2: noLevel 2: no--diacdiac = 1, cedilla = 2, acute = 3= 1, cedilla = 2, acute = 3
•• Level 3: lower = 1, upper = 2Level 3: lower = 1, upper = 2

•• Concatenate sequences of codes for each level:Concatenate sequences of codes for each level:
•• ÇÇab ab = 3, 1, 2, #, = 3, 1, 2, #, 22, 1, 1, #, 2, 1, 1, 1, 1, #, 2, 1, 1
•• ccááb = 3, 1, 2, #, b = 3, 1, 2, #, 11, 3, 1, #, 1, 1, 1, 3, 1, #, 1, 1, 1

•• Therefore: cTherefore: cááb < b < ÇÇabab

Finally, a code sequence is generated for each string to be compared, with a
separator value inserted between levels. Typically the separator is low in
value (i.e., zero), causing short strings to be considered “less than” long
strings. If the separator is given a high value, long strings will come first.

Once the code sequences are generated for each string, it is a simple matter
to compare the sequences until a difference is found. In the example above,
there are three differences. Two of these are at level 2, representing the
differences in the diacritics, and there is one difference at level three,
representing the difference in the case of the first letter. The first difference
found is on the first letter at level 2, representing the presence/absence of the
cedilla. Since this is the first difference found, and according to our ordering
no diacritic (1) is considered to be less than a cedilla (2), this produces the
answer shown above.

17

Language-specific issues

French accent marksFrench accent marks
ccootete
ccoottéé
ccôôtete
ccôôttéé

cotcotee
ccôôttee
cotcotéé
ccôôttéé

•• French orders accents from the end of the French orders accents from the end of the
word backwards when collating at level 2.word backwards when collating at level 2.

•• The standard collation framework provides a The standard collation framework provides a
“backward” feature to handle this situation.“backward” feature to handle this situation.

Some extensions must be made to the standard framework to handle a few
languages. In French collation, diacritics at level 2 are compared from the
end of the word backwards. For this reason the standard collation
framework has built a special flag on the second level, indicating that the
code sequence must be reversed before doing the comparison.

18

Language-specific issues

Reordering in Thai and LaoReordering in Thai and Lao
•• Certain vowels are rendered before the Certain vowels are rendered before the

preceding consonant.preceding consonant.
•• Encoding order reflect this rendering order.Encoding order reflect this rendering order.
•• BUT sort order reflects pronunciation orderBUT sort order reflects pronunciation order——

consonant must come first.consonant must come first.
•• Standard collation framework does Standard collation framework does notnot handle handle

this sort of reordering.this sort of reordering.

•• Solution:Solution: text must be preprocessed using sometext must be preprocessed using some
transductiontransduction mechanism.mechanism.

The standard collation framework does not completely handle sorting in
Thai and Lao. The characters in these languages are rendered with certain
vowels displayed to the left of (before) the preceding consonant. Although
the encoding for these languages matches the rendering order, they are
sorted using pronunciation order, that is, as if the vowels followed the
consonants.

In order to sort Thai and Lao correctly, a some process must be run over the
data to reorder the vowels before calling the standard collation algorithm.

19

Language-specific issues

Sorting in CJKVSorting in CJKV
•• ANSIIANSII--like sort,like sort, egeg, JIS sort, JIS sort
•• Canonical ordering of radicalsCanonical ordering of radicals
•• Number of strokes in ideographNumber of strokes in ideograph
•• PronunciationPronunciation--basedbased

•• Chinese Pinyin Chinese Pinyin -- RomanizedRomanized transliterationtransliteration

Sorting in CJKV scripts can be very complicated due to the very large
number of characters. Above are shown some of the sorting conventions that
are in use in these languages.

20

Contact Information

For More Information Contact:For More Information Contact:
•• NonNon--Roman Script InitiativeRoman Script Initiative

SIL InternationalSIL International
7500 West Camp Wisdom Rd.7500 West Camp Wisdom Rd.
Dallas, TX 75236Dallas, TX 75236
(972) 708(972) 708--74407440
nrsi@sil.orgnrsi@sil.org

This presentation is Copyright ©2001, 2004 SIL International,This presentation is Copyright ©2001, 2004 SIL International,
and may not be reproduced without permission.and may not be reproduced without permission.

