
This session will be looking at what characters to include in your keyboard, how to
decide on a layout, and reviewing various keyboarding technologies. Most of the time
will be spent on looking at Keyman.

First of all, we hope you have an orthography statement. If you pull that out it should
list all the characters you will need. Orthography statements do not tend to include the
punctuation characters (although maybe they should!).

List all of the punctuation characters you need.

You might consider including both “Latin” digits and the Arabic digits that you require.
Some applications, such as Paratext require using Latin digits for checking purposes
(in chapter and verse numbers). When you export the project you can convert all
digits to the required digits.

You should consider whether you want any hidden characters on your keyboard.

You will need to think about how you want to type ligatures. Do you want one
keystroke to trigger the ligature or do you want a sequence of characters (keystrokes)
to trigger the ligature?

You will need to think about how you want to type ligatures. Do you want one
keystroke to trigger the ligature or do you want a sequence of characters (keystrokes)
to trigger the ligature?

You will need to decide what kind of layout you want. Is this keyboard primarily for
you or for the user community? If the keyboard is for you, you might like it to be
phonetic as that might be an easier way for you to type.

If the keyboard is intended for mother tongue speakers, then you may want to use an
Arabic typewriter layout if that is what they are used to.

For either of these two options you can try to find an existing keyboard that you can
modify. That will make it easier than creating it from scratch.

Keyman is a powerful tool from Keyman for creating keyboard input methods. It
allows for more complex input processing than MSKLC and so meets a wider range
of needs. It does not use the Windows keyboard driver format, so a separate client
needs to be installed on each computer using the keyboard. There are many existing
Keyman keyboards available. More information on Keyman can be found on SIL's
NRSI site. There are now other keyboarding systems which can work with Keyman
.kmn source files.

KMFL is an open source keyboarding system for Linux systems, particularly Ubuntu,
which is compatible with Keyman 7 (or earlier) .kmn source files, so brings the power
of Keyman keyboarding to a Linux environment. Although designed for Linux/Unix
systems in general, full downloads and instructions are currently only available for
Ubuntu.

MSKLC is a freeware Microsoft tool for creating new keyboard layouts using the
Windows-native keyboard file format, and so gives seamless integration with
Windows systems. It can use an existing Windows keyboard as a starting point.
However, it is limited in its ability to cope with more complex scripts.

Ukelele is a freeware keyboard layout editor for OS X which provides a graphical
interface for .keylayout files (the standard keyboard format for OS X).

Inkey is based on Autohotkey, an open source macro-creation and automation tool.
The language used by InKey (and Autohotkey underneath) provides great flexibility
and allows complex keyboard behaviours to be programmed. The separate open
source Inkey Keyboard Creator is available to facilitate the initial creation of the
keyboard, including an option to import Keyman .kmn files. More complex tasks have
to be done by editing the Inkey .ahk source file directly, after which the keyboard
creator cannot be used to make further changes.

Inkey is currently under private beta release, but the authors have indicated that the
next version will be released under a free, open source license.

When you touch the Keyman Icon it opens the Keyman app. You can type in this
application by selecting the keyboard through the little “world” icon.

If you decide to wait to “Set Keyman as default keyboard” you can get to it another
way.

You can click on the 3 vertical dots and then the “Get Started” and it will show the
Keyman choices again.

We’ve just opened the Keyman app. You can type in this application by selecting the
keyboard through the little “world” icon.

Now you can type in the Keyman app. Then you will need to copy and paste into
wherever you want the text.
This is probably not exactly what you will want. In that case, you will want to set
Keyman as your default keyboard.

Since we’ve opened the Keyman app and selected our keyboard, we can now type in
this application. Then you will need to copy and paste into wherever you want the
text. This may not be what you want if you wish to use the keyboard in many
applications on the phone.

In that case, you will want to set Keyman as your default keyboard.
Then you will need to “Choose input method” and you should select “Keyman”

If all you want to do is build a keyboard and distribute the Keyman package (.kmp)
through your own website or through Keyman.com, you can just create, compile and
package it up on your computer.

However, if you want to put your keyboard up on KeymanWeb or Android you will
need to go through the process of getting set up on GitHub, forking the keyboards
repo on GitHub and submitting your keyboard files through GitHub.

Some of this will seem pretty technical. However, it is important to do this if you want
to redistribute your keyboard or develop a keyboard for web or mobile use.

This session will not discuss how to fork a repo. However, we can help you do that
during the workshop session.

The path here is where you created a fork (and clone) of the keyboards repo.

This path is used for where Keyman creates
all the files it needs
Folder and Keyboard name should match
Only special character allowed is “_”

Sometimes “Fill from Layout” takes a long time. I’ve clicked on the “x” and then
clicked on “Fill from Layout” again and it immediately builds.

Sometimes “Fill from Layout” takes a long time. I’ve clicked on the “x” and then
clicked on “Fill from Layout” again and it immediately builds.

Basic has fewer keys. It is easier to use on a phone
Traditional has the full keyboard. It might work on a tablet, but it would not be
useable on a phone

When compiling: If you differentiated between RALT and LALT in your Desktop
keyboard you will get some warning messages for KeymanWeb.

When you click on “Test Keyboard on web” it generates some URLs for testing
purposes. Click on a URL

This is testing your keyboard for KeymanWeb.

All of these are required for adding to Github

The folder name needs to be the same as the project name, all lower case, and not
using punctuation apart from underscore (this is so the name can be a valid identifier
in Javascript and we don't run into casing issues across operating systems). I suggest
renaming the .kmn, .kpj, .kps and folder to sil_torwali) You'll need to update the file
references in the .kpj and .kps files. It's a good idea to rename the other related files
as well for consistency -- sil_nubian.bmp; sil_nubian-layout.js, sil_nubian-1.0.json.

The folder name needs to be the same as the project name, all lower case, and not
using punctuation apart from underscore (this is so the name can be a valid identifier
in Javascript and we don't run into casing issues across operating systems). I suggest
renaming the .kmn, .kpj, .kps and folder to sil_torwali) You'll need to update the file
references in the .kpj and .kps files. It's a good idea to rename the other related files
as well for consistency -- sil_torwali.bmp; sil_torwali-layout.js, sil_torwali-1.0.json.

Consider whether to include fonts. If most computers have the fonts you need, there
is no need to include the fonts in the keyboard package. However, if very few fonts
contain the characters you need you might consider including the fonts in the
package (as long as the license allow for that). The downside is that when fonts are
updated you will need to remember to update the keyboard package as well.

