
1

Smart Fonts and KeyboardsSmart Fonts and Keyboards
KeymanKeyman and the Brave New Worldand the Brave New World

Martin Hosken
SIL Non-Roman Script Initiative
Copyright © 2001 SIL International

This presentation requires the following fonts:

SIL NRTC Presentation

Courier New

Inle Academy



2

Things Get Easier

No more presentation formsNo more presentation forms

Keyboards reflect Unicode betterKeyboards reflect Unicode better

Keyboards become trivial?Keyboards become trivial?
�� MS keyboards use a much simpler modelMS keyboards use a much simpler model

�� 11::1 1 or or 11::nn
�� DeadkeysDeadkeys

We can develop keyboards by point and shootWe can develop keyboards by point and shoot

Things get easier because we don�t have to use the keyboard to do the rendering 
by substitution, that has now gone into the font.

Don�t things now become trivial with keyboards becoming, basically, a 1:1 
mapping between a key and a Unicode value. There is no need for contexts now 
right?



3

Things Get Harder

Unicode has a relatively fixed character orderUnicode has a relatively fixed character order

Keyboard is an editing toolKeyboard is an editing tool

What happens when they press Backspace?What happens when they press Backspace?

Getting hold of the contextGetting hold of the context

For some, this is the case. Keyboard definitions become nearly trivial. If you 
don�t have any diacritics and are working with a simple script, then you are 
home and dry.

Well, not really.

There are a number of issues that we need to think about when it comes to 
working with Unicode.



4

Need to Keep Data Normalized

Which normal form?Which normal form?
'a''a' ++ '`' > ''`' > 'àà''
'a''a' ++ '`' > 'a' U'`' > 'a' U+0300+0300

This is hard workThis is hard work!!
�� anyany((basebase) + ) + anyany((ldiaKldiaK) ) > context index> context index((ldialdia,,22))

�� anyany((basebase) ) anyany((udiaudia)) + + anyany((ldiaKldiaK) ) > context> context((11) ) \\
indexindex((ldialdia,,33) ) contextcontext((22))

�� anyany((basebase) ) anyany((udiaudia) ) anyany((udiaudia)) + + anyany((ldiaKldiaK) ) > > \\
contextcontext((11) ) indexindex((ldialdia,,44) ) contextcontext((22) ) contextcontext((33))

�� And so on And so on . . .. . .

The first need is that applications like their data normalized. 

But which normal form? Do we need different keyboard layouts for different 
normal forms? Software developers. What are you expecting from the keyboard 
when it comes to editing? Can the keyboard pass in strings that have to be 
normalized?

The keyboard needs to at least keep things in canonical order. But this is hard 
work and tedious. Will Keyman do this for us and allow a mechanism for an 
application to say which normal form they want or for Keyman to tell the 
application what normal form it is getting?



5

The Keyboard Edits a Unicode String

Not editing glyphsNot editing glyphs

Intermediate Unicode must render wellIntermediate Unicode must render well

Users think visuallyUsers think visually
�� Not thinking UnicodeNot thinking Unicode
�� Need to support UserNeed to support User��s understanding of texts understanding of text

The keyboard is not editing the glyph stream, it is editing the underlying 
Unicode text. But while you are editing away, you need the renderer to be able 
to do something sensible with the intermediate form of the string as you are 
part way through typing you masterpiece. In most cases, this is not a problem, 
but there are some situations where things can get hairy.



6

Re-ordering Example: Rendering

BurmeseBurmese

Want to type visual orderWant to type visual order::

Íaem
UU++10141014 UU++10311031 UU++102102CCUU++100100EE

Íaem

Ía U+100E U+1031 aaÍÍ
U+100E U+200B U+1031 ÍÍaa○○

Ía

Consider this example from Burmese (ddhano). The second and fourth letters 
together form a vowel 'o'. And in Unicode the vowel comes after the consonant. 
So the two parts to the vowel are stored after the consonant. So the underlying 
store has two consonants (the first and 3rd characters) and then 2 vowels (chars 
2 & 4). Now, most people like to type things in visual order rather than
underlying order. Thus they want to type the pre-vowel (U+1031) before the 
following consonant. Thus they type the first letter (U+100E) and then the pre-
vowel, but what happens in the renderer?

Instead we need to insert a blank for the vowel to interact with. Some people 
like to render such situations using a dotted circle to show very clearly that 
something is up. That is optional in this case, but we need to mark what's going 
on.



7

Re-ordering Example: Keyman

+ + anyany((preVKpreVK) ) > U> U++200200B indexB index((preVpreV,,11))

UU++200200B anyB any((preVpreV) + ) + anyany((consKconsK) ) > index> index((cons,cons,33) ) contextcontext((22))

UU++200200B anyB any((preVpreV) + [) + [K_BKSPK_BKSP] ] >> nulnul

anyany((conscons) ) anyany((preVpreV) + [) + [K_BKSPK_BKSP] ] > U> U+200+200B contextB context((22))

+ [+ [K_DELK_DEL] + ] + UU++200200B anyB any((preVpreV) ) >> nulnul

+ [+ [K_DELK_DEL] + ] + anyany((conscons) ) anyany((preVpreV) ) > context> context((22))

The first line handles pressing our pre-vowel. We insert a ZWSP when we type 
the pre-vowel so that the pre-vowel won�t suddenly try and render before the 
previous character.

The second line handles pressing a subsequent consonant. We need to re-order it 
before the pre-vowel and delete the ZWSP

The third line addresses pressing backspace and the need to delete the pre-vowel 
and the ZWSP as a unit.

The fourth line handles pressing backspace following a consonant with a pre-
vowel. Here we need to make sure we end up with the ZWSP and the pre-vowel.

The fifth line is odd, it is my attempt at some type of forward context where the 
keyboard looks ahead when I press the DEL key to delete both the ZWSP and the 
pre-vowel as a unit.

The sixth line handles pressing del before a pre-vowel which has a following 
consonant.

As you can see. Things can get pretty hairy when the keyboard doesn�t fit well 
with Unicode ordering. But this is what is needed. The keyboard must deal with 
things in terms of the underlying Unicode and as you design your keyboard you 
need ot be thinking all the time about how your intermediate strings are going 
to be rendered.



8

Keyboard Editing

What happens if I drop a cursor andWhat happens if I drop a cursor and::
�� Press BackspacePress Backspace
�� Start TypingStart Typing
�� Press Delete Press Delete ((forward deleteforward delete))
�� Press an arrow keyPress an arrow key

QuestionsQuestions
�� Where are we?Where are we?
�� What is the context?What is the context?

�� BackwardsBackwards
�� ForwardsForwards

Here are some questions that you need to consider as you develop your 
keyboard.

When you press an arrow key, what happens?

1. Keyman moves its context

2. The application asks the rendering subsystem where to move the cursor too, 
or else just moves it one code in the underlying string.

Are these two in synch? Arrow key control is application specific. It would be 
better for Keyman to be able to interrogate the application and find out 
where it is. The problem is that if you have to write rules in Keyman to 
handle the arrow key, then your keyboard definition becomes application 
specific, and this is no fun.

Of course MS gets around this by not having any contextual keyboards ☺



9

Conclusion

No more rendering by keyingNo more rendering by keying

Keyboards edit Unicode stringsKeyboards edit Unicode strings
�� Rendering of intermediate stringsRendering of intermediate strings
�� Normalization Normalization �� who does it, when?who does it, when?

Better contextual information neededBetter contextual information needed



10

Questions

Questions and comments?Questions and comments?



11

Contact Information

For More Information ContactFor More Information Contact::
�� NonNon--Roman Script InitiativeRoman Script Initiative

SIL InternationalSIL International
75007500 West Camp Wisdom RdWest Camp Wisdom Rd..
Dallas, TX Dallas, TX 7523675236
((972972) ) 708708--74407440
fonts@silfonts@sil..orgorg

This presentation is Copyright This presentation is Copyright ©©20012001 SIL International,SIL International,
and may not be reproduced without permissionand may not be reproduced without permission


