
!e Multilingual Lion: TEX learns to speak Unicode

!e Multilingual Lion:

A
∗

TEX learns to speak Unicode

Jonathan Kew
SIL International

January 26, 2005

Abstract

Professor Donald Knuth’s TEX is a typesetting system with a wide user community, and a range
of supporting packages and enhancements available for many types of publishing work. However,
it dates back to the 1980s and is tightly wedded to 8-bit character data and custom-encoded fonts,
making it difficult to configure TEX for many complex-script languages.

!is paper will focus on X ETEX, a system that extends TEX with direct support for modern
OpenType and AAT fonts and the Unicode character set. !is makes it possible to typeset almost
any script and language with the same power and flexibility as TEX has traditionally offered in the
8-bit, simple-script world of European languages. X ETEX (currently available on Mac OS X, but
possibly on other platforms in the future) integrates the TEX formatting engine with technologies
from both the host operating system (Apple Type Services, Text Encoding Converter) and auxiliary
libraries (ICU, TECkit). !us, it illustrates how such components can be leveraged to provide the
benefits of Unicode within an existing software system.

!is paper should be of interest to those involved in multilingual and multiscript publishing, as
well as developers seeking to enhance legacy systems to take advantage of the benefits of Unicode.
!e merger of legacy and Unicode-based technologies means that the benefits of many years of
development in the TEX world become available for document production in a much wider range
of languages.

Some background familiarity with TEX may be helpful, but the paper’s focus will be on the
integration of Unicode technologies, not on technical details of TEX itself. A general awareness of
encodings, complex scripts, and font technologies will be assumed.

1 Background

!e TEX typesetting system has a 20-year history as a stable and reliable tool for producing well-formatted
documents from marked-up source text, and offers a great deal of power, flexibility and extensibility by
virtue of a powerful macro language. !e extensive user community, especially in the academic world,
has created a large collection of supporting packages for many different types of document.

For those unfamiliar with TEX, a brief overview may be helpful. !e TEX processor reads a source
document, recognizing characters as either text to be typeset or markup according to scanning rules
and (customizable) character categories. It expands macros and executes commands (setting parameters

∗Why a multilingual lion? Because TEX’s logo is a lion; see Knuth’s !e TEXbook (Addison Wesley: 1984) or other sources.

27 Internationalization and Unicode Conference 1 Berlin, Germany, April 2005

!e Multilingual Lion: TEX learns to speak Unicode

Source text Typeset result Notes
\’{a} á \’ is one of various commands to add an accent to a letter
\c{c} ç an accent that attaches below the letter
\aa å special command for a specific character
--- — implemented as a ligature in standard TEX fonts

\alpha α one of many symbols available in math mode
{\dn acchaa} अ"छा requires use of a special preprocessor and custom fonts

Figure 1: Traditional TEX input conventions for non-ASCII characters in 7-bit source text.

to control the typesetting process, for example), and forms the text into paragraphs and pages. Finally,
a compact representation of the typeset pages is written out to a DVI (“device independent”) file; a
subsequent device driver process reads this .dvi file and renders the pages to a specific destination such
as a screen or printer. (In the case of X ETEX, to be discussed below, this output format has been extended
and renamed XDV, and the default behavior is to automatically run an XDV-to-PDF processor, so that
the effective output format is PDF.)

Over the years, TEX has been used with many non-English languages, often using combinations of
custom-encoded 8-bit fonts and different input encodings and conventions. However, TEX’s roots are
unquestionably in Latin-script typography; the system originally processed 7-bit text (usually ASCII),
accessing 8-bit fonts for output. In 1989–90, Knuth extended the system to support 8-bit input text,
and provided some enhancements for multilingual use, but support for many non-Latin and complex
scripts remains difficult.

In addition to standard 8-bit codepages, there are ways of using TEX’s programmability to allow
input of additional text elements by representing them as character sequences. Some conventions are so
widely used that many users think of them as a standard part of the TEX program (though this is not
really the case); others are associated with macro packages for particular languages; and still others are
created just for specific projects. Figure 1 shows a few examples of typical TEX input conventions for
non-ASCII characters.

While these conventions can be extended almost indefinitely, they tend to clutter the source text;
and they rely on a variety of custom-encoded fonts to provide all the symbols needed. Unicode offers
the possibility of a far simpler model for typesetting multilingual text, where each character needed is
represented in the source not by some sequence of commands, but as itself.

In the case of complex scripts such as Devanagari, solutions based on standard TEX typically involve
a custom preprocessor that performs the contextual analysis needed for proper rendering of the script,
starting from some (often romanized) input convention, and emits special TEX commands to access the
appropriate glyphs from custom 8-bit fonts. While such solutions can work, they may be complex to
use, and fragile in how they interact with various other macro packages for document formatting. And
trying to combine several such solutions to create a highly multilingual document, using several complex
scripts simultaneously, goes far beyond what typical users can be expected to achieve.

To address these issues, an extended version of TEX known as X ETEX1 has been developed. !is
is a Unicode-based multilingual typesetting system that works with existing “smart font” technologies
to provide complex script support, within the framework of the formatting power, flexibility, and
programmability of TEX.

1See http://scripts.sil.org/xetex. !e name is typically pronounced something like zee-tech.

27 Internationalization and Unicode Conference 2 Berlin, Germany, April 2005

http://scripts.sil.org/xetex

!e Multilingual Lion: TEX learns to speak Unicode

2 Examples of use

Before looking at what was involved in extending TEX to support Unicode and smart font technologies
for text rendering, I will show a few brief examples of X ETEX at work. Figures 2 to 5 illustrate how
readily Unicode text now fits into the TEX typesetting paradigm. In each case, the “raw” source (text
and markup) is shown alongside the typeset result.

\halign{#\hfil\quad&#\hfil\cr
\label UCA default&\label Tailoring:
\& Ð < dž <<< Dž <<< DŽ\cr
dan& dan\cr
dubok& dubok\cr
džabe& ak\cr
džin& džabe\cr
Džin& džin\cr
ak& Džin\cr
Evropa& Evropa\cr}

UCA default Tailoring: & Ð < dž <<< Dž <<< DŽ
dan dan
dubok dubok
džabe đak
džin džabe
Džin džin
đak Džin
Evropa Evropa

Figure 2: From a presentation about collation, using extended Latin letters. In standard TEX, this could be done
using control sequences to encode the accented letters, but X ETEX handles the Unicode text directly.

\font\han=”STSong:color=660000” at 16pt
\font\rom=”Gentium:color=000066” at 8pt
\def\hc#1#2{\vtop{\hbox{\han #1}
\hbox{\kern10pt\rom #2}}}
\vtop{\hc{書く}{ka-ku}
\hc{最も}{motto-mo}
\hc{最後}{sai-go}
\hc{働く}{hatara-ku}
\hc{海}{umi}}

書く
ka-ku

最も
motto-mo

最後
sai-go

働く
hatara-ku

海
umi

\font\label=”Gentium Italic:color=006600” at 10pt
\def\listbox#1#2{\vtop{\hsize=60pt
\hbox{\label #1}
\moveright10pt\vbox{#2}}}
\font\t=”Thonburi:color=660000” at 11pt
\font\k=”AppleMyungjo Regular:color=660000” at 13pt
\hbox{\listbox{Thai}
{\t \\ \\ \\ \\ \\ \\ \\ }
\listbox{Korean}
{\k \\ \\ \\ \\ \\ \\ }}

Thai
กรกฎๅคม
กรง
กว)า
โกรธ
ขรม
ขวา
โขยง
ควัม

Korean
게
금
길
깅
깥
낙
남

Figure 3: Further fragments from the collation presentation, showing Asian scripts.

27 Internationalization and Unicode Conference 3 Berlin, Germany, April 2005

!e Multilingual Lion: TEX learns to speak Unicode

\font\arfont=”Scheherazade:script=arab” at 13pt
\def\ar#1{{\arfont \beginR #1\endR}}
Burki, Rozi Khan. 1999. {\it
\ar{ }
[Should we leave our language on its
death-bed?]}. Tank, Pakistan:
Muslim Book Agency.

Karimi, Abdul Hamid Khan. 1995. {\it
\ar{ }
[Urdu-Kohistani conversation and Kohistani
culture]}. Bahrain, Swat, Pakistan:
Kohistan Adab Academy.

Burki, Rozi Khan. 1999. ز#"ن &ٔ'(ا +"خ
ژ/.-؟ زر 5'ر4"ړه 67 [Should we leave
our language on its death-bed?]. Tank,
Pakistan: Muslim Book Agency.

Karimi, Abdul Hamid Khan. 1995. اردو
ادب و ;<= >?"@AB'C اور E"ل #'ل >?"@AB'C
[Urdu-Kohistani conversation and Ko-
histani culture]. Bahrain, Swat, Pak-
istan: Kohistan Adab Academy.

Figure 4: From the bibliography of a paper that cites some Arabic-script references. Note the unshaped Arabic
characters in the source text shown here; how this actually appears to a user will depend on the capabilities
of the text editor used.

\c 1
\s Mawu ƒe nya to Mawu Vi la dzi va
\p
\v 1 Le blema la, Mawu ƒo nu na mía t gbuiwo zi
ge e to eƒe gbeƒã elawo dzi le m vovovo nu.
\v 2 Ke le egbe keke maml siawo me la, Mawu ƒo nu
na mí to Via dzi. Vi siae eya ut tia be wòanyi
nuwo katã dome. Eyama ke dzie Mawu to w xexeame hã.
\v 3 Vi lae e alesi Mawu ƒe utik k e le la fia,
eye Mawu ƒe n n me tututue le eya hã si.
Vi lae ts eƒe nya ƒe us la lé xexeme blibo
la e te. Esi eyama kl míaƒe nuv wo a v la,
eyi ab b n anyi e Mawu Bubut gã si le dziƒo

la ƒe nu usime.

Mawu ƒe nya to Mawu Vi la dzi va

1 1 Le blema la, Mawu ƒo nu na mía
tɔgbuiwo zi geɖe to eƒe gbeƒãɖelawo

dzi le mɔ vovovo nu. 2 Ke le egbe ŋkeke
mamlɛ siawo me la, Mawu ƒo nu na mí
to Via dzi. Vi siae eya ŋutɔ tia be wòanyi
nuwo katã dome. Eyama ke dzie Mawu to
wɔ xexeame hã. 3 Vi lae ɖe alesi Mawu ƒe
ŋutikɔkɔe le la fia, eye Mawu ƒe nɔnɔme
tututue le eya hã si. Vi lae tsɔ eƒe nya
ƒe ŋusẽ la lé xexeme blibo la ɖe te. Esi
eyama klɔ míaƒe nuvɔ̃wo ɖa vɔ la, eyi
ɖabɔbɔ nɔ anyi ɖe Mawu Bubutɔgã si le
dziƒo ʋĩ la ƒe nuɖusime.

\c 1
\s
\p
\v 1 .
\v 2 .

\v 3 ” .“ .

دنيا جي پيدائش
FG اHIٓ"ن ۽ -L+ز)Mا ۾ ١=;وP"ت ۽۱ RL7;7​F# -L+ز TUو ان ٢ .'LW MLXا
I"ن YBM?او +]"Z;و '\]^HI F_?او .Fٔ̀ B و/;ان
La;ا روح F\)Mا +]"ن F\ َdٔe"X ۽ 'B fLWڍ
F^=رو” Y7 ڏ?' ijk)Mا -Bl7 ٣ FW Fٔ̀ X

.Fٔ̀ LX Fn F^=رو 'I “.Fٔ̀ n

Figure 5: Using a TEX macro package designed for Scripture formatting, showing examples in both African
(extended Latin script) and Pakistani (Arabic script) languages.

27 Internationalization and Unicode Conference 4 Berlin, Germany, April 2005

!e Multilingual Lion: TEX learns to speak Unicode

3 Extending the character set

!e first step towards Unicode support in TEX is to expand the character set beyond the original 256-
character limit. At the lowest level, this means changing internal data structures throughout, wherever
characters were stored as 8-bit values. As Unicode scalar values may be up to U+10FFFF, an obvious
modification would be to make “characters” 32 bits wide, and treat Unicode characters as the basic units
of text.

However, in X ETEX a pragmatic decision was made to work internally with UTF-16 as the encoding
form of Unicode, making “characters” in the engine 16 bits wide, and handling supplementary-plane
characters using UTF-16 surrogate pairs. !is choice was made for a number of reasons:

• !e operating-system APIs that X ETEX expects to use in working with Unicode text require UTF-
16, so working with this encoding form avoids the need for conversion at this interface.

• !ere are a number of internal tables in the TEX program that are implemented as arrays indexed
by character code. In standard TEX, these arrays have 256 elements each. Enlarging them to
65,536 elements each, to index them by UTF-16 code values, is just about reasonable; enlarging
them further, to allow direct indexing by Unicode scalar values, would make for extremely large
arrays. To keep the memory footprint reasonable (both at runtime and for “dumped” macro
collections), some kind of sparse array implementation would probably be needed, requiring
significant additional development and testing, and perhaps impacting performance of key inner-
loop parts of the TEX system.

• !ese per-character arrays are used to implement character “categories”, used in parsing input
text into tokens, as well as case conversions and “space factor” (a property used to modify word
spacing for punctuation in Roman typography). In practice, it seems unlikely that there will be a
great need to customize these character properties for individual supplementary-plane characters.
!ey’re unlikely to be wanted as escape characters or other special categories of TEX input; need
not have the “letter” property that allows them to be part of TEX control sequences; and probably
don’t need to be included in automatic hyphenation patterns.

In view of these factors, X ETEX works with UTF-16 code units, and Unicode characters beyond
U+FFFF cannot be given individually-customized TEX properties. !ey can still be included in docu-
ments, however, and will render correctly (given appropriate fonts) as the UTF-16 surrogate pairs will
be properly passed to the font system.

Another possible route would have been to use UTF-8 as the internal encoding form, retaining the
existing 8-bit code units used in TEX as characters. However, this would have made it impossible (without
major revisions) to provide properties such as character category (letter, other printing character, escape,
grouping delimiter, comment character, etc.), case mappings, and so on to any characters beyond the
basic ASCII set; and it would also require conversion when Unicode text is to be passed to system
APIs. Overall, therefore, UTF-16 was felt to be the most practical choice, and the appropriate TEX data
structures were systematically widened.

4 Implementing a character/glyph model

An important aspect of rendering Unicode text is the character/glyph model; it is assumed that the
reader is familiar with this concept. Traditionally, TEX does not have a well-developed character/glyph

27 Internationalization and Unicode Conference 5 Berlin, Germany, April 2005

!e Multilingual Lion: TEX learns to speak Unicode

model. Input text is a sequence of 8-bit codes, interpreted as character tokens or other (e.g., control
sequence) tokens according to the scanning rules and character categories. !ese same 8-bit codes are
used as access codes for glyphs in fonts. It is possible to remap codes by TEX macro programming, and
the “font metrics” (.tfm) files used by TEX can include simple ligature rules (e.g., fi "→ fi), but the
model is fairly rudimentary, and not adequate for script behaviors such as Arabic cursive shaping or Indic
reordering. To support the full range of complex scripts in Unicode, a more complete character/glyph
model is needed.

Rather than designing a text rendering system based on the Unicode character/glyph model from
scratch, it seemed desirable to leverage existing implementations, allowing TEX to take advantage of the
“smart fonts” and multilingual text rendering facilities found in modern operating systems and libraries.
At the time of writing, X ETEX supports two such rendering systems; it is possible that additional ones
will be supported in future versions.

4.1 Using ATSUI on Mac OS X

!e first smart-font rendering system implemented in X ETEX was the ATSUI2 system under Mac OS X.
ATSUI is the Mac OS X component that renders Unicode text using AAT3 fonts. !e essential objects
needed to render text with ATSUI are text layouts and associated styles (which in turn refer to fonts and
other attributes).

In order for a system like ATSUI to render text correctly, it must be given complete runs of text,
not individual characters; otherwise, behavior such as reordering and contextual glyph selection cannot
happen. TEX normally treats each character of text as an individual node in a list, with known (and fixed)
dimensions. Paragraph layout consists of taking a list of such nodes, with intervening “glue” (potentially
flexible space) and other items, and determining the best sequence of line-break positions and the final
location of each character and other node.

When using ATSUI for Unicode text, however, X ETEX cannot treat each character (or, strictly
speaking, UTF-16 code unit) as a separate node, to be measured and positioned individually. Instead,
it collects sequences of characters that share the same font style, and calls ATSUI to measure such
sequences (typically, entire words). A paragraph then consists of a list of such “word nodes”, each
with its dimensions as determined by ATSUI, and intervening space and other nodes. !e basic TEX
paragraphing algorithm applies just as well to these larger “chunks” as to traditional character nodes.

During formatting, then, X ETEX makes use of just a few basic ATSUI APIs, in order to measure
each word (or similar fragment) of text; in particular:

ATSUCreateStyle, ATSUSetAttributes Create an ATSUI style object, and assign appropriate text at-
tributes. One ATSUStyle is associated with each font face and size combination requested by the
TEX document, and used whenever text in that particular style needs to be measured.

ATSUCreateTextLayout, ATSUSetTextPointerLocation, ATSUSetRunStyle Create an ATSUI text
layout object, and associate a string of Unicode text and a style object with it.

ATSUGetUnjustifiedBounds Measure a range of text as rendered with the associated font and other
attributes. !is gives the TEX paragraphing algorithm the measurements that it will use in laying
out the text.

2Apple Type Services for Unicode Imaging; see http://developer.apple.com/intl/atsui.html.
3Apple Advanced Typography; see http://developer.apple.com/fonts/TTRefMan/RM06/Chap6AATIntro.html.

27 Internationalization and Unicode Conference 6 Berlin, Germany, April 2005

http://developer.apple.com/intl/atsui.html
http://developer.apple.com/fonts/TTRefMan/RM06/Chap6AATIntro.html

!e Multilingual Lion: TEX learns to speak Unicode

(In addition, a number of font-related ATSUI APIs are used to enumerate the fonts available in the
system, determine what layout features the fonts support, etc.)

When X ETEX has completed layout for a paragraph of text, therefore, it has a list of lines each
containing a list of “word nodes”; each such node contains a run of Unicode text and a reference to an
ATSUI style. !e TEX system does not know the details of the actual glyphs that will be used to render
the text, or precisely where they will be positioned; only the overall dimensions and position of each
word. !e glyph-level detail is left entirely to the ATSUI rendering system.

To illustrate this, figure 6 shows the trace output generated for a short fragment of text set as a
single-line paragraph. Using a standard TEX font, the line consists of a list of character nodes, with
intervening “glue” (flexible space). Each character has an associated font, and its metrics will be looked
up in the corresponding TEX font metric (TFM) file. Note that TEX has automatically inserted some
kerns between adjacent letters; this is also controlled by the TFM file for this font. In contrast, using
an AAT font, the text line consists simply of a list of complete words with intervening glue; TEX does
not deal with the individual characters. !ere may be kerning between letters here too, but the TEX
algorithms are unaware of it; it happens automatically as ATSUI measures or renders the words, and
TEX knows only their overall dimensions.

\font\AATfont=”Times Roman” \AATfont
\setbox0=\vbox{The quick brown fox.}
\showbox0

\font\TeXfont=cmr10 \TeXfont
\setbox1=\vbox{The quick brown fox.}
\showbox1

X ETEX using an AAT font:

> \box0=
\vbox(8.0+2.0)x469.75499
.\hbox(8.0+2.0)x469.75499, glue set 363.10948fil
..\hbox(0.0+0.0)x20.0
..\AATfont The
..\glue 2.5 plus 1.66666 minus 0.83333
..\AATfont quick
..\glue 2.5 plus 1.66666 minus 0.83333
..\AATfont brown
..\glue 2.5 plus 1.66666 minus 0.83333
..\AATfont fox.
..\penalty 10000
..\glue(\parfillskip) 0.0 plus 1.0fil
..\glue(\rightskip) 0.0

TEX (or X ETEX) using a legacy font with .tfm metrics:

> \box1=
\vbox(6.94444+1.94444)x469.75499
.\hbox(6.94444+1.94444)x469.75499, glue set 356.6715fil
..\hbox(0.0+0.0)x20.0
..\TeXfont T
..\TeXfont h
..\TeXfont e
..\glue 3.33333 plus 1.66666 minus 1.11111
..\TeXfont q
..\TeXfont u
..\TeXfont i
..\TeXfont c
..\kern-0.27779
..\TeXfont k
..\glue 3.33333 plus 1.66666 minus 1.11111
..\TeXfont b
..\TeXfont r
..\TeXfont o
..\kern-0.27779
..\TeXfont w
..\TeXfont n
..\glue 3.33333 plus 1.66666 minus 1.11111
..\TeXfont f
..\TeXfont o
..\kern-0.27779
..\TeXfont x
..\TeXfont .
..\penalty 10000
..\glue(\parfillskip) 0.0 plus 1.0fil
..\glue(\rightskip) 0.0

Figure 6: Using tracing commands to examine X ETEX’s internal structures for text using an AAT font, compared
to the same text with a standard TEX font.

27 Internationalization and Unicode Conference 7 Berlin, Germany, April 2005

!e Multilingual Lion: TEX learns to speak Unicode

After document formatting is complete, the X ETEX “back-end” (actually a separate process, xdv2pdf)
reads the .xdv file that encodes the formatted document, and creates a PDF version for viewing or
printing. To do this, it “renders” the page encoded in the .xdv file through the Mac OS X Quartz
graphics system, with a PDF file as the rendering destination. At this point, it again uses ATSUI APIs,
loading each text string into an ATSUTextLayout, assigning the proper style, and callingATSUDrawText
to image the text into the PDF being constructed.

4.2 Using OpenType via ICU Layout

While the initial implementation of X ETEX was based on Apple’s ATSUI rendering system, the increasing
availability of fonts with OpenType layout features led to a desire to also support this font technology.
!e system was therefore extended by incorporating the OpenType layout engine from ICU4. (In
addition to the actual layout engine, X ETEX makes use of ICU’s implementation of the Unicode Bidi
Algorithm.) !e main functions used in the typesetting process include:

ubidi_open, ubidi_close, ubidi_setPara, ubidi_getDirection, ubidi_countRuns, ubidi_getVisualRun
Before laying out glyphs, it is necessary to deal with bidirectional layout issues; most “chunks”
X ETEX needs to measure will be unidirectional, but this is not always the case. With mixed-
direction text, each direction run is measured separately.

LayoutEngine::layoutChars, getGlyphs, getGlyphPositions !e ICU LayoutEngine class is used to
perform the actual layout process, and retrieve the list of glyphs and positions. !e resulting array
of positioned glyphs is stored within the “word node” in X ETEX’s paragraph list.

Internally, ICU-based OpenType rendering is handled in a very different way from ATSUI ren-
dering. With ATSUI, the output of the typesetting process includes the original Unicode strings and
the appropriate font descriptors; the PDF-generating back-end then reuses ATSUI layout functions to
actually render the text into the PDF destination. In the case of OpenType, however, the typesetting
process retrieves the array of positioned glyphs that result from the layout operation, and records this;
the back-end then merely has to draw the glyphs as specified, not repeat any of the text layout work.

When the TEX source calls for a particular font, X ETEX looks for specific layout tables within
the font (e.g., morx for AAT, or GSUB for OpenType) to determine which layout engine to use, and
instantiates either an ATSUI style or an ICU LayoutEngine as appropriate. (In the event that a font
supports both layout technologies, X ETEX currently chooses the OpenType engine by default, but users
can explicitly specify which to use.) !e difference in the implementation of the two technologies is,
however, entirely hidden from the main TEX program, which simply deals with “word nodes”, forming
them into paragraphs and pages once they’ve been measured by the appropriate smart-font engine.

4.3 Hyphenation support

Implementing “word nodes” as “black boxes” within the main TEX program made it easy to form
paragraphs of such words, without extensive changes to the rest of TEX. A complication arose, however,
in that TEX has an automatic hyphenation algorithm that comes into effect if it is unable to find
satisfactory line-break positions for a paragraph. !e hyphenation routine applies to lists of character

4IBM’s open-source project, International Components for Unicode; see http://oss.software.ibm.com/icu/.

27 Internationalization and Unicode Conference 8 Berlin, Germany, April 2005

http://oss.software.ibm.com/icu/

!e Multilingual Lion: TEX learns to speak Unicode

nodes representing runs of text within a paragraph to be line-broken. But at this level, the program sees
Unicode “word nodes” as indivisible, rigid chunks.

Explicit discretionary hyphens may be included in TEX input, and these continue to work in X ETEX,
as they become “discretionary break” nodes in the list of items making up the paragraph. !e word
fragments on either side, then, would become separate nodes in the list, and a line-break can occur
between them.

In order to reinstate hyphenation support, therefore, it was necessary to extend the hyphenation
routine so as to be able to extract the text from a word node, use TEX’s pattern-based algorithm to
find possible hyphenation positions within the word, and then replace the original word node with a
sequence of nodes representing the (possibly) hyphenated fragments, with discretionary hyphen nodes
in between.

A final refinement proved necessary here: once the line-breaks have been chosen, and the lines of
text are being “packaged” for justification to the desired width, any unused hyphenation points are
removed and the adjacent word (fragment) nodes re-merged. !is is required in order to allow rendering
behavior such as character reordering and ligatures, implemented at the smart-font level, to occur across
hyphenation points. With an early release of X ETEX, a user reported that OpenType ligatures in certain
words such as different would intermittently fail (appearing as different, without the ff ligature). !is
was occurring when automatic hyphenation came into effect and a discretionary break was inserted,
breaking the word node into sub-words that were being rendered separately.

5 Backward compatibility

!e original motivation for the X ETEX project was to provide a typesetting solution that worked with
Unicode and complex scripts, via smart font technologies. However, it soon became clear that many
existing TEX users, with no complex-script requirements, nevertheless found the integration with the
host platform’s font management to be very attractive, and wished to use X ETEX and native Mac OS X
fonts with existing TEX (or more commonly LTEX5) documents. !ere is a huge legacy of pre-Unicode
TEX documents and resources, and it is helpful for users to be able to continue working with these
materials, while at the same time beginning to take advantage of the extended capabilities of X ETEX.

5.1 Traditional TEX input conventions

Existing TEX and LTEX documents often use ASCII-based sequences to represent accented and other
“extended” characters not directly available in the input character set. !e macro packages that imple-
ment these commands map them to known character codes in particular font encodings.

To allow such documents to be typeset using standard Unicode-compliant fonts in place of the
custom-encoded fonts previously used, Ross Moore (an early X ETEX user) has provided a package6 for
LTEX that maps several hundred such control sequences to the correct Unicode codepoints. Using this
package, many existing LTEX documents that use extended Latin and other “special” characters can be
typeset using Unicode fonts, without needing to actually convert the encoding of the source text.

5Probably the most widely-used TEX macro package, offering extensive support for structured markup and many document
types and style options; see http://www.latex-project.org/. !is paper is an example of the use of the LTEX formatting
package with X ETEX.

6See the utf8accents package, available from http://scripts.sil.org/xetex_related.

27 Internationalization and Unicode Conference 9 Berlin, Germany, April 2005

http://www.latex-project.org/
http://scripts.sil.org/xetex_related

!e Multilingual Lion: TEX learns to speak Unicode

5.2 Legacy source document encodings

As initially designed, X ETEX assumed that all input text is encoded in Unicode; it would read input files
as either UTF-8 or UTF-16. Existing ASCII documents, of course, are also valid UTF-8 and therefore
could be used directly. !is includes documents that use ASCII-based TEX conventions for accents and
other extended characters, as mentioned above.

However, some TEX users have documents encoded with 8-bit codepages such as ISO Latin-1,
MacRoman, Windows Cyrillic, etc. With the original “pure Unicode” implementation of X ETEX, it
was impossible to process such files; they would be assumed to be UTF-8, but on encountering values
> 127, the bytes would be misinterpreted as UTF-8 sequences rather than as individual characters. (In
standard TEX, with purely byte-oriented input, such files can of course be read; and the characters can
be remapped through TEX macro programming, if (as often occurs) there is a mismatch between the
encodings of input text and the fonts to be used.

To enable users to process such files with X ETEX, without requiring a separate conversion to Uni-
code first, more flexible input encoding support was eventually added to the system. A new command
\XeTeXinputencoding was implemented, which allows the user to request on-the-fly conversion from
another character encoding into Unicode as the source text is read.

!e \XeTeXinputencoding command requires one parameter, the name of the desired encoding. A
number of options are supported. First, utf8 or utf16 will set the system to direct Unicode input; auto
restores the default behavior, which is to detect the Unicode encoding form from the initial bytes of the
file. !e special name bytes causes X ETEX to read individual byte values as separate code units, treating
them as character codes 0–255. While this is unlikely to represent the correct Unicode interpretation of
the source text, it may be useful if these codes are to be processed by existing TEX macros rather than
used directly as text characters.

Finally, any Internet encoding name known to the Mac OS X Text Encoding Converter7 may be
specified. In this case, X ETEX calls TEC to perform encoding conversion as it reads the input text. Just
a few basic TEC APIs are sufficient for this task:

TECGetTextEncodingFromInternetName Used by \XeTeXinputencoding to look up the encoding
name specified, and determine if it is known to the operating system.

CreateTextToUnicodeInfo Initialize the mapping information needed by TEC to convert between a
particular legacy encoding and Unicode.

ConvertFromTextToUnicode Convert a buffer of text from the external legacy encoding into Unicode.

Note that although at the time of writing, X ETEX relies on TEC for encoding conversion of input
text, this may change in a future release. A future version will probably use either ICU or GNU libiconv
functions instead of TEC. !is would be in the interests of portability to operating systems other than
Mac OS X.

It is also possible that the input mapping support will be extended to allow the use of SIL’s TECkit8

to directly support custom user-defined byte encodings. !is would involve a minor extension to the
\XeTeXinputencoding command, allowing users to specify the name of a TECkit mapping file as an
alternative to the name of a standard legacy codepage.

7A standard component of the Mac OS; see http://developer.apple.com/documentation/Carbon/Reference/Text_
Encodin_sion_Manager/index.html.

8Text Encoding Conversion toolkit; see http://scripts.sil.org/teckit.

27 Internationalization and Unicode Conference 10 Berlin, Germany, April 2005

http://developer.apple.com/documentation/Carbon/Reference/Text_Encodin_sion_Manager/index.html
http://developer.apple.com/documentation/Carbon/Reference/Text_Encodin_sion_Manager/index.html
http://scripts.sil.org/teckit

!e Multilingual Lion: TEX learns to speak Unicode

; TECkit mapping for TeX input conventions <-> Unicode characters
LHSName ”TeX-text”
RHSName ”UNICODE”

pass(Unicode)
U+002D U+002D <> U+2013 ; -- -> en dash
U+002D U+002D U+002D <> U+2014 ; --- -> em dash

U+0027 <> U+2019 ; ’ -> right single quote
U+0027 U+0027 <> U+201D ; ’’ -> right double quote
U+0022 > U+201D ; ” -> right double quote

U+0060 <> U+2018 ; ‘ -> left single quote
U+0060 U+0060 <> U+201C ; ‘‘ -> left double quote

U+0021 U+0060 <> U+00A1 ; !‘ -> inverted exclam
U+003F U+0060 <> U+00BF ; ?‘ -> inverted question

Figure 7: !e TECkit source file tex-text.map, defining a font mapping for X ETEX that provides compatibility
with the conventions of legacy TEX fonts.

5.3 Font mappings using TECkit

Widely-used TEX keyboarding conventions such as \’{e} "→ ‘é’ or \pounds "→ ‘£’ are implemented
via TEX macros (and therefore easily adapted for Unicode-compliant fonts, by modifying the macro
definitions). In addition, there are a few established conventions that are implemented as ligature rules
associated with standard TEX fonts; these include --- "→ ‘—’ (em-dash), ?‘ "→ ‘¿’, and a few more. In
principle, smart font technologies such as AAT and OpenType could implement these same ligatures,
providing the same behavior as traditional TEX fonts. But as these conventions are peculiar to the TEX
world, it is not realistic to expect them to be provided in mainstream, general-purpose fonts.

Although it would usually be possible to simulate these ligatures via macro programming, it is
difficult to ensure that reprogramming widely-used text characters such as the hyphen, question mark,
and quotation marks will not interfere with other levels of markup in the source document. Instead,
X ETEX provides a mechanism known as “font mappings”, whereby a mapping of Unicode characters is
associated with a particular font, and applied to all strings of text being measured or rendered in that
font. !is is implemented using the TECkit mapping engine.

While TECkit was primarily designed to convert between legacy byte encodings and Unicode, it can
also be used to perform transformations on a Unicode text stream, using the same mapping language
and text conversion library; figure 7 shows the tex-text mapping that is provided to support normal TEX
conventions. When associated with a standard Unicode-compliant font in X ETEX, this has the effect of
implementing the legacy TEX conventions for dashes and quotes, as shown in figure 8, without requiring
any TEX-specific features in the smart fonts themselves.

While this mechanism, associating a mapping defined in terms of Unicode character sequences, was
first devised in order to support legacy TEX input conventions, it can also be applied in other ways. For
example, figure 9 shows how it is possible to typeset a single fragment of input text in two scripts by
giving different font specifications, one of which includes a transliteration mapping.

27 Internationalization and Unicode Conference 11 Berlin, Germany, April 2005

!e Multilingual Lion: TEX learns to speak Unicode

\font\TestA=”Times New Roman” at 9pt
\TestA !‘Typing ‘‘quotes’’---and
dashes---the \TeX\ way!\par

\bigskip
\font\TestB=”Times New Roman:
mapping=tex-text” at 9pt

\TestB !‘Typing ‘‘quotes’’---and
dashes---the \TeX\ way!\par

!`Typing ``quotes''---and dashes---the TEX way!

¡Typing “quotes”—and dashes—the TEX way!

Figure 8: Using the tex-text font mapping to support legacy typing conventions. (!e source document is of course
plain text; color is added for clarity here and in other figures.)

\begin{centering}
\def\SampleText{Unicode - это уникальный

код для любого символа,\\
независимо от платформы,\\
независимо от программы,\\
независимо от языка.\par}

\font\gen=”Gentium” at 9pt \gen
\SampleText
\bigskip
\font\gentrans=”Gentium:
mapping=cyr-lat-iso9” at 9pt \gentrans

\SampleText
\end{centering}

Unicode - это уникальный код для любого символа,
независимо от платформы,
независимо от программы,

независимо от языка.

Unicode - èto unikal'nyj kod dlâ lûbogo simvola,
nezavisimo ot platformy,

nezavisimo ot programmy,
nezavisimo ot âzyka.

Figure 9: Using a font mapping for on-the-fly transliteration while typesetting.

5.4 Math typesetting

One of TEX’s traditional strengths is in mathematical typesetting. It was designed to enable authors to
readily typeset complex equations and similar displays, with precise control over details of layout and
spacing, and with many aspects of math formatting handled automatically. Figure 10 shows an example
of TEX input using math mode, alongside the typeset result.

Standard TEX macro packages provide commands to access many hundreds of math and other
technical symbols, and these are mapped to the appropriate characters in a selection of specialized
fonts. In Unicode many such symbols now have their own codepoints, and so it should be possible to
typeset such material using standard Unicode-compliant fonts, rather than the custom-encoded math
and symbol fonts normally used with TEX.

However, this is not as simple as it may sound. TEX’s math typesetting features rely on specialized
font metric information associated with the math fonts, in addition to the glyphs themselves. !is is
necessary to provide accurate typesetting of complex constructs. Unfortunately, this means that users
cannot simply tell X ETEX to use a Unicode-compliant font for math; not only will the standard TEX math
commands access the wrong glyphs, but also, even if the TEX macros are redefined using Unicode values,
such fonts will still not work in math mode because of the lack of extended font metric information.

27 Internationalization and Unicode Conference 12 Berlin, Germany, April 2005

!e Multilingual Lion: TEX learns to speak Unicode

$$\eqalign{
\biggl(\int_{-\infty}^\infty e^{-x^2}\,dx\biggr)^2
&=\int_{-\infty}^\infty\int_{-\infty}^\infty
e^{-(x^2+y^2)}\,dx\,dy\cr

&=\int_0^{2\pi}\int_0^\infty e^{-r^2}r\,dr\,d\theta\cr
&=\int_0^{2\pi}\biggl(-{e^{-r^2}\over2}
\bigg\vert_{r=0}^{r=\infty}\,\biggr)\,d\theta\cr

&=\pi.\cr}$$

(∫∞
−∞ e−x2

dx

)2

=

∫∞
−∞

∫∞
−∞ e−(x2+y2) dx dy

=

∫2π

0

∫∞
0

e−r2

r dr dθ

=

∫2π

0

(
−

e−r2

2

∣∣∣∣r=∞
r=0

)
dθ

= π.

Figure 10: An example of math typesetting, one of TEX’s strengths. X ETEX supports legacy TEX fonts and math
mode, as shown here, but does not currently extend these capabilities.

To address this issue, it will be necessary to provide these additional font metrics for any Unicode
fonts that are to be used for math typesetting; and it will also be necessary to extend additional data
structures in X ETEX that are currently limited to 8-bit codes. It may be possible to make use of work
from the Omega project (see section 7.3) to facilitate this, but at the time of writing, X ETEX is limited
to using legacy 8-bit TEX fonts for math typesetting.

6 Advanced font features

In order to take full advantage of the multilingual support and sophisticated typographic features offered
by modern font technologies, we need to go beyond merely specifying a font and rendering a sequence
of Unicode characters. Correct rendering may depend on the language of the text, as different languages
sometimes require different visual results even for the exact same Unicode characters.

For example, Turkish uses both of the characters i (U+0069 ʟɪɴ ʟʟ ʟʀ ɪ) and ı (U+0131
ʟɪɴ ʟʟ ʟʀ ʟ ɪ). But many Latin-script fonts include an fi ligature in which the dot of
the i is assimilated into the top of the f. Such a ligature is appropriate for most languages, and improves
the appearance of the rendered text; and typical OpenType or AAT fonts will contain ligature rules that
automatically use it wherever the sequence fi occurs in the text stream. However, in Turkish it becomes
a problem because the distinction between i and ı is lost. Figure 11 illustrates this issue.9

\font\txtfont=”Adobe Garamond Pro” at 8pt
\txtfont
Apple, HP, IBM, JustSystem, Microsoft, Oracle,
SAP, Sun, Sybase, Unisys ve endüstrinin di er
ileri gelen firmaları Evrensel Kod Standardını
desteklemektedirler. Evrensel Kod, XML, Java,
ECMAScript (JavaScript), LDAP, CORBA 3.0,
WML vb. gibi modern standartlar tarafından
ISO/IEC 10646 uyarlanmasının resmi yoludur.

Apple, HP, IBM, JustSystem, Microsoft, Oracle, SAP, Sun,
Sybase, Unisys ve endüstrinin diğer ileri gelen firmaları Evrensel
Kod Standardını desteklemektedirler. Evrensel Kod, XML, Java,
ECMAScript (JavaScript), LDAP, CORBA 3.0, WML vb. gibi
modern standartlar tarafından ISO/IEC 10646 uyarlanmasının
resmi yoludur.

Figure 11: Turkish text showing the necessity for language-specific font rendering. Note how the automatic use
of the fi ligature obscures the distinction between i and ı, which are separate letters in Turkish.

An increasing number of OpenType fonts provide a solution to this problem, in the form of support
9Sample Turkish text from the Unicode web site, http://www.unicode.org/standard/translations/turkish.html.

27 Internationalization and Unicode Conference 13 Berlin, Germany, April 2005

http://www.unicode.org/standard/translations/turkish.html

!e Multilingual Lion: TEX learns to speak Unicode

\font\txtfont=”Adobe Garamond Pro:
language=TUR” at 8pt

\txtfont
Apple, HP, IBM, JustSystem, Microsoft, Oracle,
SAP, Sun, Sybase, Unisys ve endüstrinin di er
ileri gelen firmaları Evrensel Kod Standardını
desteklemektedirler. Evrensel Kod, XML, Java,
ECMAScript (JavaScript), LDAP, CORBA 3.0,
WML vb. gibi modern standartlar tarafından
ISO/IEC 10646 uyarlanmasının resmi yoludur.

Apple, HP, IBM, JustSystem, Microsoft, Oracle, SAP, Sun,
Sybase, Unisys ve endüstrinin diğer ileri gelen firmaları Evrensel
Kod Standardını desteklemektedirler. Evrensel Kod, XML, Java,
ECMAScript (JavaScript), LDAP, CORBA 3.0, WML vb. gibi
modern standartlar tarafından ISO/IEC 10646 uyarlanmasının
resmi yoludur.

Figure 12: Using the Turkish language support in an OpenType font to ensure correct rendering of fi sequences.

for multiple “language systems”. !e font developer can provide tables within the font that substitute
different glyphs, enable different subsets of the possible ligatures, etc., depending on the selected lan-
guage. X ETEX supports this capability by allowing a font specification in the TEX document to include a
language tag. If the specified language tag is supported by the font, X ETEX will render the font according
to those OpenType rules instead of the default behavior. Figure 12 shows how the Turkish example can
be corrected by adding the proper language tag to the font declaration.

Another issue is that some Unicode characters have alternative possible glyph shapes (within a
single typeface design). For example, the character U+014A ʟɪɴ ɪʟ ʟʀ ɴɢ has four possible
designs in the Doulos SIL typeface: Ŋ " # $. !ese are all legitimate renderings of the same Unicode
character, the uppercase version of eng (ŋ). By default, text rendered in Doulos SIL will use the first of
these forms. But in some language communities, a different form may be preferred—or may even be
required for readability.

One solution to this would be to use different language systems within the OpenType tables to access
the alternate Eng glyphs. In practice, however, this is more difficult to arrange than the Turkish case.
!is character is used in many lesser-known and little-documented languages, and so font developers
cannot reasonably be expected to provide all the appropriate language system mappings.

An alternative approach is through user-selectable font features. !ese are another mechanism for
controlling exactly how a given font renders text. Rather than associating variant glyphs or other options
with a particular language, the options can be made available as individual “features” that can be enabled
or disabled as required. So the Doulos SIL font, for example, has a feature namedUppercase Eng alternates,
with four possible settings, and the character U+014A can be displayed as any of the four available glyphs
according to the feature setting chosen.

X ETEX allows such features to be included as part of the font specification used to load a particular
font for typesetting. Figure 13 shows how the same text can be typeset either with the default glyphs
provided in Doulos SIL or using alternate forms for particular characters. !is mechanism enables the
user to achieve culturally-appropriate rendering of the Unicode text without requiring the font developer
to be aware of the proper choices of glyph variants for each language where the font may be used.

7 X ETEX and other TEX extensions

!e X ETEX project is just one of a number of extended versions of TEX that have been created over the
years, and it may be useful to give a brief comment on its relationship to some other projects.

27 Internationalization and Unicode Conference 14 Berlin, Germany, April 2005

!e Multilingual Lion: TEX learns to speak Unicode

\font\Doulos=”Doulos SIL/AAT” at 10pt
\font\DoulosAlt=”Doulos SIL/AAT:
Alternate forms=Literacy alternates,
Small v-hook straight style;

Uppercase Eng alternates=Capital N with tail”
at 10pt

\Doulos
X see na Mose o utitoto keke la anyi, eye wòna
wohl u e trutiwo u bene d la si atsr
g gbeviwo la nagaw nuvevi Israel viwo ya o.\par
\bigskip
\DoulosAlt
X see na Mose o utitoto keke la anyi, eye wòna
wohl u e trutiwo u bene d la si atsr
g gbeviwo la nagaw nuvevi Israel viwo ya o.\par

Xɔsee na Mose ɖo Ŋutitotoŋkeke
la anyi, eye wòna wohlẽ ʋu ɖe
ʋɔtrutiwo ŋu bene dɔla si atsr*
ŋgɔgbeviwo la nagawɔ nuvevi
Israel viwo ya o.

Xɔsee n+ Mose ɖo $utitotoŋkeke
l+ +nyi, eye wòn+ wohlẽ ,u ɖe
,ɔtrutiwo ŋu bene dɔl+ si +tsr*
ŋ-ɔ-beviwo l+ n+-+wɔ nuvevi
Isr+el viwo y+ o.

Figure 13: Using optional font features to control the rendering of specific Unicode characters. !is may be for
stylistic reasons, or may be required for readability in a particular language community.

7.1 TEXGX

TEXGX10 is an important ancestor of X ETEX, in that it pioneered the model of integrating the TEX
formatting system with a host platform’s smart-font rendering technology. TEXGX relied on Apple’s
now-obsolete QuickDraw GX graphics system for Mac OS 7–9, and was still based on 8-bit legacy
encodings, not Unicode. However, it did adapt TEX’s scanning and paragraphing routines to treat
entire words as units to be passed to an external text layout system, as well as extending the \font
command to load fonts from the host platform and to access optional features. !ese extensions have
been incorporated largely unchanged into X ETEX.

7.2 ε-TEX

ε-TEX11 is a widely-used extended version of TEX that adds a number of new commands to the language,
while retaining compatibility with the standard program. It is in fact used by many installations as the
default ‘TEX’ program, and an increasing number of macro packages assume that ε-TEX features are
available.

X ETEX is implemented as an extension of ε-TEX, so that it benefits from the enhancements provided
in that system. In particular, support for bidirectional paragraph layout, needed for languages such as
Arabic and Hebrew, is inherited from ε-TEX.

7.3 Omega, Aleph

Omega12 is an ambitious project that extends TEX to work with 16-bit character codes and provides a
mechanism of input and output filters (“Omega transformation processes”). !ese can perform complex

10See http://www.sil.org/computing/texgx.html.
11See http://www.tug.org/tex-archive/systems/e-tex/v2/.
12See http://omega.enstb.org/ and http://www.tex.ac.uk/cgi-bin/texfaq2html?label=omega.

27 Internationalization and Unicode Conference 15 Berlin, Germany, April 2005

http://www.sil.org/computing/texgx.html
http://www.tug.org/tex-archive/systems/e-tex/v2/
http://omega.enstb.org/
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=omega

!e Multilingual Lion: TEX learns to speak Unicode

transformations both as text is read from a file (to support different encodings) and between the internal
character codes and font access codes.

Aleph13, formerly known as e-Omega, is a project that aims to merge features of Omega and ε-TEX,
and to provide a more stable platform than Omega, which has been undergoing major restructuring and
appears to face a somewhat uncertain future.

Omega (and therefore Aleph) provides a very powerful mechanism for supporting multilingual type-
setting and complex scripts. However, because (like TEX itself) it is intended to be platform-independent,
it does not take advantage of available text systems such as ATSUI; instead, all complex script behavior
must be implemented through Omega’s own OTP mechanisms. !is is both a strength and a weakness:
a strength in that the mechanism is both powerful and portable; but a weakness in that configuring
fonts (especially for complex scripts) to work with Omega is a non-trivial programming task, beyond
the capabilities of many users.

In contrast, one of the key ideas of X ETEX is that it should not be necessary to re-implement
complex script and typographic behavior that has already been defined by the developers of AAT and
OpenType fonts. If a user’s computer system supports a given writing system, with appropriate fonts and
rendering behavior, this should be immediately usable in the typesetting system; no laborious, technical
configuration procedure should be needed. !is gives X ETEX a major ease-of-use advantage, but comes
at a price: the typesetting system is now dependent on the host platform’s font technology, in a way that
standard TEX is not, and so documents may not be readily portable to other platforms.

While X ETEX does not share Omega’s complex-script features, taking an entirely different approach
to text rendering, it does use ideas from Omega with regard to the “widening” of character codes within
the TEX engine from 8 to 16 bits.

7.4 pdfTEX

One more TEX extension is worth mentioning here: pdfTEX14 is an extended version of TEX that provides
the option to generate PDF output, instead of the traditional DVI that requires post-processing with a
device-specific driver. It includes a number of additional commands to enhance the resulting PDF files
with bookmarks, interactivity, and so on.

While X ETEX also generates PDF output, this is actually accomplished by generating “extended DVI”
output, and then rendering this to PDF as a subsequent process. !is is less efficient than pdfTEX’s direct
PDF generation, and makes it more difficult to integrate some of the advanced PDF features (although
to some extent, this can still be done through the traditional DVI-to-device driver model).

At present, then, X ETEX is entirely separate from pdfTEX. Integration of X ETEX’s Unicode and
font support with pdfTEX’s PDF generation and extended PDF features would provide an even more
attractive typesetting system, but would require significant development effort; at the time of writing,
no such effort is under way.

8 Future directions

!is paper has discussed how Unicode and multilingual/multi-script support has been integrated into
the TEX system, providing users with a powerful typesetting system that handles virtually any language
for which an appropriate “smart font” is available. However, X ETEX should still be considered somewhat

13See http://www.tex.ac.uk/cgi-bin/texfaq2html?label=aleph.
14See http://www.tug.org/applications/pdftex/.

27 Internationalization and Unicode Conference 16 Berlin, Germany, April 2005

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=aleph
http://www.tug.org/applications/pdftex/

!e Multilingual Lion: TEX learns to speak Unicode

experimental, a “work in progress”, and there is considerable scope for further enhancement. A few
possible directions for further work include:

Graphite support Another smart font technology, besides AAT and OpenType, is SIL International’s
Graphite15 system. !is could be integrated as a third text rendering option within X ETEX.

Alternate platforms Currently, X ETEX is available only on Mac OS X. It was initially developed on this
platform by taking advantage of specific Mac OS X technologies (especially ATSUI for Unicode
text layout, and Quartz2D for graphics/PDF rendering). However, there is considerable interest
in porting to other operating systems.

pdfTEX integration As suggested above, it would seem ideal to merge X ETEX’s Unicode and advanced-
font-technology support with pdfTEX’s PDF generation.

Unicode math font support !is has also been mentioned above; currently, only legacy 8-bit fonts can
be used for math typesetting. Fully supporting Unicode for math will probably require coordi-
nation among font developers and TEX macro writers, as well as extensions to the X ETEX system
itself.

Line-breaking without spaces Writing systems that do not use spaces between words are currently not
well supported in X ETEX. Line-breaking and paragraph layout relies on recognizing potential line
break positions, primarily at spaces, and so will not work in languages such as !ai or Chinese.
It is possible to work around this by use of zero-width spaces in the source text, but ideally the
paragraphing algorithm should be extended to handle such writing systems correctly.

While these are offered as examples of how X ETEX, or perhaps some future system modeled on the
current project, might be developed further, this does not constitute a commitment to implement any
particular feature!

A good forum for further suggestions, questions, contributions, and other feedback is the X ETEX
mailing list16 created by interested users shortly after the first public release of a test version, and
currently including some 130-plus users. !e input of this group has been invaluable in shaping X ETEX,
particularly with regard to issues of compatibility with legacy documents and major macro packages
such as LTEX and ConTEXt17. I would like to thank all those who have reported bugs, helped isolate
problems, asked helpful and thought-provoking questions, suggested enhancements, contributed TEX
macros, and encouraged and supported the X ETEX project in many ways.

15See http://scripts.sil.org/RenderingGraphite.
16See http://www.tug.org/mailman/listinfo/xetex.
17A macro package designed with similar general-purpose aims to the more widely-known LTEX, but intended to reflect

more recent ideas about markup, etc.; see http://www.pragma-ade.com/.

27 Internationalization and Unicode Conference 17 Berlin, Germany, April 2005

http://scripts.sil.org/RenderingGraphite
http://www.tug.org/mailman/listinfo/xetex
http://www.pragma-ade.com/

	Background
	Examples of use
	Extending the character set
	Implementing a character/glyph model
	Using ATSUI on Mac OS X
	Using OpenType via ICU Layout
	Hyphenation support

	Backward compatibility
	Traditional TeX input conventions
	Legacy source document encodings
	Font mappings using TECkit
	Math typesetting

	Advanced font features
	XeTeX and other TeX extensions
	TeXGX
	e-TeX
	Omega, Aleph
	pdfTeX

	Future directions

